## Chapter 8 Solutions

1. The position of the maximum is given by

$$
\tan \theta=\frac{y}{L}
$$

For a and b , we have $L$ but the angle must be found.
a) The angle of the first minimum is

$$
\begin{gathered}
a \sin \theta=\lambda \\
0.01 \times 10^{-3} \mathrm{~m} \cdot \sin \theta=500 \times 10^{-9} \mathrm{~m} \\
\theta=2.866^{\circ}
\end{gathered}
$$

Therefore, the position on the screen is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \left(2.866^{\circ}\right)=\frac{y}{200 \mathrm{~cm}} \\
y=10.0 \mathrm{~cm}
\end{gathered}
$$

b) The angle of the second minimum is

$$
\begin{gathered}
a \sin \theta=2 \lambda \\
0.01 \times 10^{-3} \mathrm{~m} \cdot \sin \theta=2 \cdot 500 \times 10^{-9} \mathrm{~m} \\
\theta=5.74^{\circ}
\end{gathered}
$$

Therefore, the position on the screen is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \left(5.74^{\circ}\right)=\frac{y}{200 \mathrm{~cm}} \\
y=20.1 \mathrm{~cm}
\end{gathered}
$$

2. The width of the slit will be found with the position of the $1^{\text {st }}$ minimum.

$$
a \sin \theta=\lambda
$$

If the central maximum is 4 cm wide, then the distance between the first minimum and the centre of the central maximum is 2 cm . So, we have

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{2 \mathrm{~cm}}{500 \mathrm{~cm}} \\
\theta=0.2292^{\circ}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
a \sin \theta=\lambda \\
a \cdot \sin \left(0.2292^{\circ}\right)=560 \times 10^{-9} \mathrm{~m} \\
a=0.14 \mathrm{~mm}
\end{gathered}
$$

3. The wavelength will be found with the position of the $1^{\text {st }}$ minimum.

$$
a \sin \theta=\lambda
$$

If the central maximum is 50 cm wide, then the distance between the first minimum and the centre of the central maximum is 25 cm . So, we have

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{25 \mathrm{~cm}}{160 \mathrm{~cm}} \\
\theta=8.88^{\circ}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
a \sin \theta=\lambda \\
0.01 \mathrm{~m} \cdot \sin \left(8.88^{\circ}\right)=\lambda \\
\lambda=1.544 \mathrm{~mm}
\end{gathered}
$$

4. The light intensity is calculated with

$$
I=I_{0}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2}
$$

To calculate the intensity, $\alpha$ is needed. $\alpha$ is

$$
\alpha=\frac{a \sin \theta}{\lambda} 2 \pi
$$

With have $\lambda$ but we need the angle.
0.5 cm from the centre of the central maximum, the angle is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{0.5 \mathrm{~cm}}{200 \mathrm{~cm}} \\
\theta=0.1432^{\circ}
\end{gathered}
$$

Therefore, the value of $\alpha$ is

$$
\begin{aligned}
\alpha & =\frac{a \sin \theta}{\lambda} 2 \pi \\
& =\frac{0.1 \times 10^{-3} \mathrm{~m} \cdot \sin \left(0.1432^{\circ}\right)}{600 \times 10^{-9} \mathrm{~m}} \cdot 2 \pi \\
& =2.618 \mathrm{rad}
\end{aligned}
$$

Thus, the intensity is

$$
\begin{aligned}
I & =I_{0}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2} \\
& =I_{0}\left(\frac{\sin (1.309)}{(1.309)}\right)^{2} \\
& =0.5445 I_{0}
\end{aligned}
$$

5. The half-length of the central maximum is

$$
\sin \theta=\frac{\lambda}{a}
$$

The 2 wavelength gives us these 2 equations.
At 450 nm , we have

$$
\sin \theta_{1}=\frac{450 \mathrm{~nm}}{a}
$$

At 650 nm , we have

$$
\sin \theta_{2}=\frac{650 \mathrm{~nm}}{a}
$$

Dividing these 2 equations gives

$$
\begin{aligned}
& \frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{\frac{650 n m}{a}}{\frac{450 n m}{a}} \\
& \frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{13}{9}
\end{aligned}
$$

Angle 1 (when the wavelength is 450 nm ) can be found.
If the central maximum is 4 cm wide, then the distance between the first minimum and the centre of the central maximum is 2 cm . So, we have

$$
\begin{gathered}
\tan \theta_{1}=\frac{y}{L} \\
\tan \theta_{1}=\frac{2 \mathrm{~cm}}{300 \mathrm{~cm}} \\
\theta_{1}=0.382^{\circ}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{13}{9} \\
\frac{\sin \theta_{2}}{\sin \left(0,382^{\circ}\right)}=\frac{13}{9} \\
\theta_{2}=0,5517^{\circ}
\end{gathered}
$$

So, the position of the first minimum on the screen is

$$
\begin{gathered}
\tan \theta_{2}=\frac{y}{L} \\
\tan \left(0.5517^{\circ}\right)=\frac{y}{300 \mathrm{~cm}} \\
y=2.889 \mathrm{~cm}
\end{gathered}
$$

The width of the central maximum is twice this value, so it is 5.778 cm .
6. We need to find the position of the two minimums. As the central maximum is 10 cm wide, we already know that the first minimum is at $y=5 \mathrm{~cm}$.

It remains to find the position of the $2^{\text {nd }}$ minimum.
The position of the minimums is given by

$$
a \sin \theta=M \lambda
$$

Thus, we have the following two equations.
First minimum

$$
a \sin \theta_{1}=\lambda
$$

Second minimum

$$
a \sin \theta_{2}=2 \lambda
$$

Dividing these equations gives

$$
\begin{aligned}
\frac{a \sin \theta_{2}}{a \sin \theta_{1}} & =\frac{2 \lambda}{\lambda} \\
\frac{\sin \theta_{2}}{\sin \theta_{1}} & =2
\end{aligned}
$$

We need the angle of the first minimum. As the first minimum is at $y=5 \mathrm{~cm}$, the angle is

$$
\begin{gathered}
\tan \theta_{1}=\frac{y}{L} \\
\tan \theta_{1}=\frac{5 \mathrm{~cm}}{400 \mathrm{~cm}} \\
\theta_{1}=0.716^{\circ}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\frac{\sin \theta_{2}}{\sin \theta_{1}}=2 \\
\frac{\sin \theta_{2}}{\sin \left(0.716^{\circ}\right)}=2 \\
\theta_{2}=1.432^{\circ}
\end{gathered}
$$

So, the position of the second minimum on the screen is

$$
\begin{gathered}
\tan \theta_{2}=\frac{y}{L} \\
\tan \left(1.432^{\circ}\right)=\frac{y}{400 \mathrm{~cm}} \\
y=10.002 \mathrm{~cm}
\end{gathered}
$$

The distance between the second minimum and the first minimum is therefore

$$
\Delta y=10.002 \mathrm{~cm}-5 \mathrm{~cm}=5.002 \mathrm{~cm}
$$

7. The angles of the minima are found with

$$
a \sin \theta=M \lambda
$$

The first minimum at $20^{\circ}$ indicates that

$$
\begin{aligned}
& a \sin 20^{\circ}=\lambda \\
& \sin 20^{\circ}=\frac{\lambda}{a}
\end{aligned}
$$

Therefore, the angle of the second minimum is

$$
\begin{gathered}
a \sin \theta=2 \lambda \\
\sin \theta=2 \frac{\lambda}{a} \\
\sin \theta=2 \cdot \sin 20^{\circ} \\
\sin \theta=0,68404 \\
\theta=43,16^{\circ}
\end{gathered}
$$

For the 3rd minimum, we have

$$
\begin{gathered}
a \sin \theta=3 \lambda \\
\sin \theta=3 \frac{\lambda}{a} \\
\sin \theta=3 \cdot \sin 20^{\circ} \\
\sin \theta=1,026
\end{gathered}
$$

As there is no solution, there is no third minimum.
8. a) We have

$$
\frac{d}{a}=\frac{0.2 \mathrm{~mm}}{0.04 m m}=5
$$

This means that $m_{d}=4$. The number of maxima is therefore $2 \cdot 4+1=9$.
b) The intensity is given by

$$
I_{t o t}=4 I_{10}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2} \cos ^{2} \frac{\Delta \phi}{2}
$$

To calculate this intensity, $\Delta \phi$ and $\alpha$ are needed. They are

$$
\Delta \phi=\frac{d \sin \theta}{\lambda} 2 \pi \quad \alpha=\frac{a \sin \theta}{\lambda} 2 \pi
$$

To calculate them, $\theta$ is needed.
3 cm from the centre of the central maximum, the angle is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{3 \mathrm{~cm}}{240 \mathrm{~cm}} \\
\theta=0.7162^{\circ}
\end{gathered}
$$

The value of $\Delta \phi$ is thus

$$
\begin{aligned}
\Delta \phi & =\frac{d \sin \theta}{\lambda} 2 \pi \\
& =\frac{0.2 \times 10^{-3} \mathrm{~m} \cdot \sin \left(0.7162^{\circ}\right)}{600 \times 10^{-9} \mathrm{~m}} \cdot 2 \pi \\
& =26.178 \mathrm{rad}
\end{aligned}
$$

The value of $\alpha$ is

$$
\begin{aligned}
\alpha & =\frac{a \sin \theta}{\lambda} 2 \pi \\
& =\frac{0.04 \times 10^{-3} \mathrm{~m} \cdot \sin \left(0.7162^{\circ}\right)}{600 \times 10^{-9} \mathrm{~m}} \cdot 2 \pi \\
& =5.236 \mathrm{rad}
\end{aligned}
$$

Therefore, the intensity is

$$
\begin{aligned}
I_{\text {tot }} & =4 I_{10}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2} \cos ^{2} \frac{\Delta \phi}{2} \\
& =4 I_{10} \cdot\left(\frac{\sin \left(\frac{5.236}{2}\right)}{\left(\frac{5.236}{2}\right)}\right)^{2} \cdot \cos ^{2} \frac{26.178}{2} \\
& =0.1097 I_{10}
\end{aligned}
$$

c) The intensity is given by

$$
I_{t o t}=4 I_{10}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2} \cos ^{2} \frac{\Delta \phi}{2}
$$

To calculate this intensity, $\Delta \phi$ and $\alpha$ are needed. They are

$$
\Delta \phi=\frac{d \sin \theta}{\lambda} 2 \pi \quad \alpha=\frac{a \sin \theta}{\lambda} 2 \pi
$$

To calculate them, $\theta$ is needed.
The angle of the first interference maximum is

$$
\begin{gathered}
d \sin \theta=\lambda \\
\sin \theta=\frac{\lambda}{d}
\end{gathered}
$$

The value of $\Delta \phi$ is therefore

$$
\begin{aligned}
\Delta \phi & =\frac{d \sin \theta}{\lambda} 2 \pi \\
& =\frac{d \frac{\lambda}{d}}{\lambda} 2 \pi \\
& =2 \pi
\end{aligned}
$$

The value of $\alpha$ is

$$
\begin{aligned}
\alpha & =\frac{a \sin \theta}{\lambda} 2 \pi \\
& =\frac{a \frac{\lambda}{d}}{\lambda} 2 \pi \\
& =\frac{a}{d} 2 \pi \\
& =\frac{0.04 m m}{0.2 m m} \cdot 2 \pi \\
& =\frac{2 \pi}{5}
\end{aligned}
$$

Thus, the intensity is

$$
\begin{aligned}
I_{\text {tot }} & =4 I_{10}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\left(\frac{\alpha}{2}\right)}\right)^{2} \cos ^{2} \frac{\Delta \phi}{2} \\
& =4 I_{10} \cdot\left(\frac{\sin \left(\frac{\pi}{5}\right)}{\left(\frac{\pi}{5}\right)}\right)^{2} \cdot \cos ^{2} \frac{2 \pi}{2} \\
& =3.5 I_{10}
\end{aligned}
$$

As the intensity of the central interference maximum is $4 I_{10}$, the ratio of intensity is

$$
\text { ratio }=\frac{3.5 I_{10}}{4 I_{10}}=0.875
$$

The intensity is thus $87.5 \%$ of the intensity of the central interference maximum.
9. a)

The distance between the slits will be found with the position of the interference maxima

$$
d \sin \theta=m \lambda
$$

We notice that the $8^{\text {th }}$-order interference maximum is close to $y=5 \mathrm{~cm}$. (Any maximum or minimum can be used). At this position, the angle is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{5 \mathrm{~cm}}{200 \mathrm{~cm}} \\
\theta=1.432^{\circ}
\end{gathered}
$$

For the $8^{\text {th }}$-order maximum, we have

$$
\begin{gathered}
d \sin \theta=8 \lambda \\
d \cdot \sin \left(1.432^{\circ}\right)=8 \cdot 650 \times 10^{-9} \mathrm{~m} \\
d=2.0806 \times 10^{-4} \mathrm{~m}=0.20806 \mathrm{~mm}
\end{gathered}
$$

As this is a little approximate, let's say 0.2 mm .
b) The distance between the slits will be found with the position of the minimum of diffraction.

$$
a \sin \theta=M \lambda
$$

We notice that the $1^{\text {st }}$-order diffraction minimum is close to $y=3.2 \mathrm{~cm}$. (Any minimum can be used). At this position, the angle is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{3.2 \mathrm{~cm}}{200 \mathrm{~cm}} \\
\theta=0.9167^{\circ}
\end{gathered}
$$

For the first-order minimum, we have

$$
\begin{gathered}
a \sin \theta=\lambda \\
a \cdot \sin \left(0.9167^{\circ}\right)=650 \times 10^{-9} \mathrm{~m} \\
a=4.063 \times 10^{-5} \mathrm{~m}=0.04063 \mathrm{~mm}
\end{gathered}
$$

As this is a little approximate, let's say 0.04 mm .
10. The angle of the first-order minimum is

$$
\begin{gathered}
\sin \theta=1,22 \frac{\lambda}{a} \\
\sin \theta=1.22 \cdot \frac{560 \times 10^{-9} \mathrm{~m}}{0,1 \times 10^{-3} \mathrm{~m}} \\
\theta=0.39145^{\circ}
\end{gathered}
$$

Therefore, the distance between the centre of the diffraction pattern and the first minimum on the screen is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \left(0.3914^{\circ}\right)=\frac{y}{200 \mathrm{~cm}} \\
y=1.366 \mathrm{~cm}
\end{gathered}
$$

11. The diameter of the hole will be found with

$$
\sin \theta=1.22 \frac{\lambda}{a}
$$

If the central maximum has a 6 mm diameter, then the distance between the first minimum and the centre of the central maximum is 3 mm . So, we have

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{0.3 \mathrm{~cm}}{180 \mathrm{~cm}} \\
\theta=0.0955^{\circ}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\sin \theta=1.22 \frac{\lambda}{a} \\
\sin \left(0.0955^{\circ}\right)=1.22 \cdot \frac{620 \times 10^{-9} \mathrm{~m}}{a} \\
a=4.538 \times 10^{-4} \mathrm{~m}=0.4538 \mathrm{~mm}
\end{gathered}
$$

12. According to the Babinet's principle, the diffraction pattern obtained with a hair is identical to the pattern obtained with a slit. Thus, the width of the hair is the same as the width of the slit that corresponds to the same diffraction pattern. So, this problem will be treated as a slit problem.

Thus, the width of the hair can be found with the formula giving the with of a slit

$$
a \sin \theta=\lambda
$$

The angle of the first minimum is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \theta=\frac{0.065 m}{9.67 m} \\
\theta=0.3851^{\circ}
\end{gathered}
$$

The width of the hair is then found with

$$
\begin{gathered}
a \sin \theta=\lambda \\
a \cdot \sin \left(0.3851^{\circ}\right)=523 \times 10^{-9} \mathrm{~m} \\
a=7.78 \times 10^{-5} \mathrm{~m} \\
a=77.8 \mu \mathrm{~m}
\end{gathered}
$$

13. The distance will be found with

$$
\theta_{c(\text { rad })}=\frac{d}{L}
$$

To obtain it, we need the critical angle. This angle is

$$
\begin{gathered}
\sin \theta_{c}=1.22 \frac{\lambda}{a} \\
\sin \theta_{c}=1.22 \cdot \frac{550 \times 10^{-9} \mathrm{~m} / 1.33}{3 \times 10^{-3} \mathrm{~m}} \\
\theta_{c}=0.009635^{\circ}
\end{gathered}
$$

Therefore, the distance is

$$
\begin{gathered}
\theta_{c(\mathrm{rad})}=\frac{d}{L} \\
1.6817 \times 10^{-4} \mathrm{rad}=\frac{0.02 \mathrm{~m}}{L} \\
L=118.9 \mathrm{~m}
\end{gathered}
$$

14. The distance will be found with

$$
\theta_{c(\text { rad })}=\frac{d}{L}
$$

To obtain it, we need the critical angle. This angle is

$$
\begin{gathered}
\sin \theta_{c}=1.22 \frac{\lambda}{a} \\
\sin \theta_{c}=1.22 \cdot \frac{550 \times 10^{-9} \mathrm{~m}}{0.25 \mathrm{~m}} \\
\theta_{c}=1.538 \times 10^{-4} \circ
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\theta_{c(\text { rad })}=\frac{d}{L} \\
2.684 \times 10^{-6} \mathrm{rad}=\frac{d}{200,000 \mathrm{~m}} \\
d=0.5368 \mathrm{~m}
\end{gathered}
$$

15. The diameter will be found with

$$
\sin \theta_{c}=1.22 \frac{\lambda}{a}
$$

To obtain it, we need the angle between the objects. This angle is

$$
\begin{aligned}
\theta_{c(\text { rad })} & =\frac{d}{L} \\
& =\frac{8 \times 10^{7} \mathrm{~km}}{4.73 \times 10^{13} \mathrm{~km}} \\
& =1.691 \times 10^{-6} \mathrm{rad}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\sin \theta_{c}=1.22 \frac{\lambda}{a} \\
\sin \left(1.691 \times 10^{-4} \mathrm{rad}\right)=1.22 \cdot \frac{550 \times 10^{-9} \mathrm{~m}}{a} \\
a=0.3967 \mathrm{~m}
\end{gathered}
$$

16. The intensity is

$$
I=I_{0}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\frac{\alpha}{2}}\right)^{2}
$$

At a maximum (or a minimum), we must have $d I / d \alpha=0$. Thus, we must have

$$
\begin{gathered}
\frac{d I}{d \alpha}=0 \\
\frac{d}{d \alpha}\left(I_{0}\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\frac{\alpha}{2}}\right)^{2}\right)=0 \\
I_{0} 2\left(\frac{\sin \left(\frac{\alpha}{2}\right)}{\frac{\alpha}{2}}\right)\left(\frac{\cos \left(\frac{\alpha}{2}\right) \frac{1}{2}}{\frac{\alpha}{2}}-\frac{\sin \left(\frac{\alpha}{2}\right) \cdot \frac{1}{2}}{\left(\frac{\alpha}{2}\right)^{2}}\right)=0
\end{gathered}
$$

There are two possibilities for this derivative to vanish. First possibility: the first term in parentheses vanishes.

$$
\frac{\sin \left(\frac{\alpha}{2}\right)}{\frac{\alpha}{2}}=0
$$

The solution of this equation is

$$
\frac{\alpha}{2}=M \pi
$$

where $M=1,2,3, \ldots$. We recognize this solution: those are the minimum of intensity. Second possibility: the second term in parentheses vanishes.

$$
\frac{\cos \left(\frac{\alpha}{2}\right) \frac{1}{2}}{\frac{\alpha}{2}}-\frac{\sin \left(\frac{\alpha}{2}\right) \cdot \frac{1}{2}}{\left(\frac{\alpha}{2}\right)^{2}}=0
$$

The solution leads to

$$
\begin{gathered}
\frac{\cos \left(\frac{\alpha}{2}\right) \frac{1}{2}}{\frac{\alpha}{2}}=\frac{\sin \left(\frac{\alpha}{2}\right) \cdot \frac{1}{2}}{\left(\frac{\alpha}{2}\right)^{2}} \\
\cos \left(\frac{\alpha}{2}\right)=\frac{\sin \left(\frac{\alpha}{2}\right)}{\frac{\alpha}{2}} \\
\frac{\alpha}{2}=\tan \left(\frac{\alpha}{2}\right)
\end{gathered}
$$

This equation is not easy to solve. Among other things, it can be solved with a software like Maple or with the given internet site. Here is the solution according to Wolfram.

| Input:$x=\tan (x)$ | Open code $\Theta$ |
| :---: | :---: |
|  |  |
|  |  |
| Alternate forms: |  |
| $x=\frac{\sin (x)}{\cos (x)}$ |  |
|  |  |  |
| $x=\frac{i\left(e^{-i x}-e^{i x}\right)}{e^{-i x}+{ }^{\text {a }}}$ |  |
| $e^{-i x}+e^{i x}$ |  |
|  | $\Theta$ |
| Alternate form assuming x is real: |  |
| $\sin (2 x)$ |  |
| $\cos (2 x)+1$ |  |
|  | $\Theta$ |
| Numerical solutions: | More digits |
| $x \approx \pm 10.9041216594289 \ldots$ |  |
|  | $\Theta$ |
| $x \approx \pm 7.72525183693771 \ldots$ |  |
|  | $\Theta$ |
| $x \approx \pm 4.49340945790906 \ldots$ |  |
|  | $\Theta$ |
| $x=0$ |  |
|  | $\Theta$ |
| $x \approx 14.0661939128315 \ldots$ |  |
|  | $\Theta$ |

The first maximum is thus at $x=4.49341$. (The approximation in which the maxima were assumed to be exactly between the minima gives 4.7124) Thus,

$$
\begin{aligned}
& \frac{\alpha}{2}=4.49341 \\
& \alpha=8.98682
\end{aligned}
$$

Since

$$
\alpha=\frac{a \sin \theta}{\lambda} 2 \pi
$$

the angle is

$$
\begin{gathered}
\frac{a \sin \theta}{\lambda} 2 \pi=8.98682 \\
\frac{0.1 \times 10^{-3} \mathrm{~m} \cdot \sin \theta}{600 \times 10^{-9} \mathrm{~m}} \cdot 2 \pi=8.98682 \\
\sin \theta=0.00858178 \\
\theta=0.4917^{\circ}
\end{gathered}
$$

Therefore, the distance is

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \left(0.4917^{\circ}\right)=\frac{y}{2 m} \\
y=0.01716 \mathrm{~m} \\
y=1.716 \mathrm{~cm}
\end{gathered}
$$

