Chapter 10 Solutions

1. The wavelength of the peak is

$$
\begin{aligned}
\lambda_{\text {pic }} & =\frac{2.898 \times 10^{-3} \mathrm{mK}}{T} \\
& =\frac{2.898 \times 10^{-3} \mathrm{mK}}{3273 \mathrm{~K}} \\
& =885 \mathrm{~nm}
\end{aligned}
$$

This corresponds to infrared radiation.
2. The temperature is found with

$$
\begin{gathered}
\lambda_{\text {pic }}=\frac{2.898 \times 10^{-3} \mathrm{mK}}{T} \\
502 \times 10^{-9} \mathrm{~m}=\frac{2.898 \times 10^{-3} \mathrm{mK}}{T} \\
T=5773 \mathrm{~K}
\end{gathered}
$$

3. The power is

$$
\begin{aligned}
P & =\sigma A\left(T^{4}-T_{0}^{4}\right) \\
& =5.67 \times 10^{-8} \frac{W}{m^{2} K^{4}} 4 \pi\left(3.2 \times 10^{10} \mathrm{~m}\right)^{2}\left((6015 \mathrm{~K})^{4}-(0 \mathrm{~K})^{4}\right) \\
& =9.55 \times 10^{29} \mathrm{~W}
\end{aligned}
$$

This is about 2500 times brighter than the Sun.
4. a) The power is

$$
\begin{aligned}
P & =\sigma A\left(T^{4}-T_{0}^{4}\right) \\
& =5.67 \times 10^{-8} \frac{W}{m^{2} K^{4}} \cdot 1.8 m^{2} \cdot\left((310 K)^{4}-(293 K)^{4}\right) \\
& =190.4 W
\end{aligned}
$$

(This is the same power as the power required to go biking with a little effort).
b) The power is

$$
\begin{aligned}
P & =\sigma A\left(T^{4}-T_{0}^{4}\right) \\
& =5.67 \times 10^{-8} \frac{W}{m^{2} K^{4}} \cdot 1.8 m^{2} \cdot\left((310 K)^{4}-(243 \mathrm{~K})^{4}\right) \\
& =586.7 \mathrm{~W}
\end{aligned}
$$

(This is equivalent to a really strenuous exercising. Go on a stationary bike that shows the power and try to achieve this power...)
5. The temperature will be found from the power with

$$
P=\sigma A\left(T^{4}-T_{0}^{4}\right)
$$

To find it, we need the area of the filament.
The filament is a cylinder whose area is

$$
\begin{aligned}
A & =2 \pi r l \\
& =2 \pi \cdot 0.0005 \mathrm{~m} \cdot 0.1 \mathrm{~m} \\
& =3.1416 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the temperature is

$$
\begin{gathered}
P=\sigma A\left(T^{4}-T_{0}^{4}\right) \\
60 \mathrm{~W}=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}} \cdot 3.1416 \times 10^{-4} \mathrm{~m}^{2} \cdot\left(T^{4}-(293 \mathrm{~K})^{4}\right) \\
T=1355 \mathrm{~K}=1082^{\circ} \mathrm{C}
\end{gathered}
$$

6. The energy is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{550 \mathrm{~nm}} \\
& =2.25 \mathrm{eV}
\end{aligned}
$$

7. The number of photons is given by

$$
N=\frac{\text { Total energy emitted }}{\text { Energy of one photon }}
$$

The energy of a photon is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{632 \mathrm{~nm}} \\
& =1.962 \mathrm{eV} \\
& =3.143 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

The energy emitted per second is

$$
\begin{aligned}
E & =P t \\
& =0.001 \mathrm{~W} \cdot 1 \mathrm{~s} \\
& =0.001 \mathrm{~J}
\end{aligned}
$$

Therefore, the number of photons is

$$
\begin{aligned}
N & =\frac{\text { Total energy emitted }}{\text { Energy of one photon }} \\
& =\frac{0.001 \mathrm{~J}}{3.143 \times 10^{-19} \frac{J}{\text { photons }}} \\
& =3.182 \times 10^{15} \text { photons }
\end{aligned}
$$

8. The number of photons is given by

$$
N=\frac{\text { Total energy received }}{\text { Energy of one photon }}
$$

The energy of a photon is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{585 \mathrm{~nm}} \\
& =2.12 \mathrm{eV} \\
& =3.396 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

The energy received in 20 seconds is

$$
\begin{aligned}
E & =I A_{\text {receiver }} t \\
& =50 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \cdot 3 \mathrm{~m}^{2} \cdot 20 \mathrm{~s} \\
& =3000 \mathrm{~J}
\end{aligned}
$$

Therefore, the number of photons is

$$
\begin{aligned}
N & =\frac{\text { Total energy received }}{\text { Energy of one photon }} \\
& =\frac{3000 \mathrm{~J}}{3.396 \times 10^{-19} \frac{J}{\text { photons }}} \\
& =8.835 \times 10^{21} \text { photons }
\end{aligned}
$$

9. The number of photons is given by

$$
N=\frac{\text { Total energy received }}{\text { Energy of one photon }}
$$

The energy of a photon is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{470 \mathrm{~nm}} \\
& =2.638 \mathrm{eV} \\
& =4.227 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

The energy received per second is

$$
\begin{aligned}
E & =I A_{\text {receiver }} t \\
& =200 \frac{W}{m^{2}} \cdot \pi(0.0025 \mathrm{~m})^{2} \cdot 1 \mathrm{~s} \\
& =0.003927 \mathrm{~J}
\end{aligned}
$$

Therefore, the number of photons is

$$
\begin{aligned}
N & =\frac{\text { Total energy received }}{\text { Energy of one photon }} \\
& =\frac{0.003927 \mathrm{~J}}{4.227 \times 10^{-19} \frac{J}{\text { photons }}} \\
& =9.291 \times 10^{15} \text { photons }
\end{aligned}
$$

10. The maximal energy of the electrons is found with

$$
E_{k \text { max }}=h f-\phi
$$

The photon energy is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{150 \mathrm{~nm}} \\
& =8.267 \mathrm{eV}
\end{aligned}
$$

The maximum energy of the ejected electrons is, therefore,

$$
\begin{aligned}
E_{k \max } & =h f-\phi \\
& =8.267 \mathrm{eV}-4.5 \mathrm{eV} \\
& =3.767 \mathrm{eV}
\end{aligned}
$$

11. The maximal energy of the electrons is found with

$$
E_{k \max }=h f-\phi
$$

The work function of cesium is

$$
\begin{aligned}
\phi & =\frac{1240 \mathrm{eVnm}}{\lambda_{0}} \\
& =\frac{1240 \mathrm{eVnm}}{686 \mathrm{~nm}} \\
& =1.808 \mathrm{eV}
\end{aligned}
$$

a) With a wavelength of 690 nm , the energy of the photons is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{690 \mathrm{~nm}} \\
& =1.797 \mathrm{eV}
\end{aligned}
$$

The energy of the ejected electrons is then

$$
\begin{aligned}
E_{k \max } & =h f-\phi \\
& =1.797 \mathrm{eV}-1.808 \mathrm{eV} \\
& =-0.011 \mathrm{eV}
\end{aligned}
$$

This means that there are no electrons ejected since a negative kinetic energy is impossible. Photons don't have enough energy to eject electrons.
b) With a wavelength of 450 nm , the energy of the photons is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{450 \mathrm{~nm}} \\
& =2.756 \mathrm{eV}
\end{aligned}
$$

The energy of the ejected electrons is then

$$
\begin{aligned}
E_{k \max } & =h f-\phi \\
& =2.756 \mathrm{eV}-1.808 \mathrm{eV} \\
& =0.948 \mathrm{eV}
\end{aligned}
$$

12. a) The threshold wavelength is

$$
\begin{gathered}
\phi=\frac{1240 \mathrm{eVnm}}{\lambda_{0}} \\
3.2 \mathrm{eV}=\frac{1240 \mathrm{eVnm}}{\lambda_{0}} \\
\lambda_{0}=387.5 \mathrm{~nm}
\end{gathered}
$$

b) The maximal speed is found with the maximum energy of the electrons, which is found with

$$
E_{k \max }=h f-\phi
$$

With a wavelength of 250 nm , the energy of the photons is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{250 \mathrm{~nm}} \\
& =4.96 \mathrm{eV}
\end{aligned}
$$

The energy of the ejected electrons is then

$$
\begin{aligned}
E_{k \max } & =h f-\phi \\
& =4.96 \mathrm{eV}-3.2 \mathrm{eV} \\
& =1.76 \mathrm{eV} \\
& =2.82 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Therefore, the speed of the electrons is

$$
\begin{gathered}
E_{k \max }=\frac{1}{2} m v_{\max }^{2} \\
2.82 \times 10^{-19} \mathrm{~J}=\frac{1}{2} \cdot 9.1094 \times 10^{-31} \mathrm{~kg} \cdot v_{\max }^{2} \\
v_{\max }=7.868 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

13. The threshold wavelength id found with the work function, and this work function is found with

$$
E_{k \max }=h f-\phi
$$

The maximum kinetic energy of the electrons is

$$
\begin{aligned}
E_{k \max } & =\frac{1}{2} m v_{\max }^{2} \\
& =\frac{1}{2} \cdot 9.1094 \times 10^{-31} \mathrm{~kg} \cdot\left(5 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =1.139 \times 10^{-19} \mathrm{~J} \\
& =0.711 \mathrm{eV}
\end{aligned}
$$

The energy of the photons is

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{400 \mathrm{~nm}} \\
& =3.1 \mathrm{eV}
\end{aligned}
$$

The work function is then found with

$$
\begin{gathered}
E_{k \max }=h f-\phi \\
0.711 \mathrm{eV}=3.1 \mathrm{eV}-\phi \\
\phi=2.389 \mathrm{eV}
\end{gathered}
$$

Therefore, the threshold wavelength is

$$
\begin{gathered}
\phi=\frac{1240 \mathrm{eVnm}}{\lambda_{0}} \\
2,389 \mathrm{eV}=\frac{1240 \mathrm{eVnm}}{\lambda_{0}} \\
\lambda_{0}=519 \mathrm{~nm}
\end{gathered}
$$

14. Since 3% of the photons eject electrons, the number of ejected electrons is

$$
N_{\text {electrons }}=0.03 \cdot N_{\text {photons }}
$$

The energy of a photon received is given by

$$
N_{\text {photons }}=\frac{\text { Total energy }}{\text { Energy of one photon }}
$$

$$
\begin{aligned}
E & =\frac{1240 \mathrm{eVnm}}{\lambda} \\
& =\frac{1240 \mathrm{eVnm}}{450 \mathrm{~nm}} \\
& =2.756 \mathrm{eV} \\
& =4.414 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

The energy received per second per square centimetre is

$$
\begin{aligned}
E & =I A_{\text {receiver }} t \\
& =40 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \cdot 0.0001 \mathrm{~m}^{2} \cdot 1 \mathrm{~s} \\
& =0.004 \mathrm{~J}
\end{aligned}
$$

Therefore, the number of photons received is

$$
\begin{aligned}
N & =\frac{\text { Total energy }}{\text { Energy of one photon }} \\
& =\frac{0.004 \mathrm{~J}}{4.414 \times 10^{-19} \frac{J}{\text { photons }}} \\
& =9.091 \times 10^{15} \text { photons }
\end{aligned}
$$

If only 3% of the photons eject an electron, then the number of ejected electrons is

$$
\begin{aligned}
N_{\text {electrons }} & =0.03 \cdot N_{\text {photons }} \\
& =0.03 \cdot 9.091 \times 10^{15} \\
& =2.718 \times 10^{15}
\end{aligned}
$$

15. a) The wavelength shift is

$$
\begin{aligned}
\Delta \lambda & =2.4263 \times 10^{-3} \mathrm{~nm} \cdot(1-\cos \theta) \\
& =2.4263 \times 10^{-3} \mathrm{~nm} \cdot\left(1-\cos 45^{\circ}\right) \\
& =0.0007106 \mathrm{~nm}
\end{aligned}
$$

b) The wavelength of the incident photon is

$$
\begin{gathered}
E=\frac{1240 \mathrm{eVnm}}{\lambda} \\
62,000 \mathrm{eV}=\frac{1240 \mathrm{eVnm}}{\lambda} \\
\lambda=0.02 \mathrm{~nm}
\end{gathered}
$$

The new wavelength is thus

$$
\begin{aligned}
\lambda^{\prime} & =\lambda+\Delta \lambda \\
& =0.02 \mathrm{~nm}+0.0007106 \mathrm{~nm} \\
& =0.0207106 \mathrm{~nm}
\end{aligned}
$$

c) The new energy of the photon is

$$
\begin{aligned}
E^{\prime} & =\frac{1240 \mathrm{eVnm}}{\lambda^{\prime}} \\
& =\frac{1240 \mathrm{eVnm}}{0.0207106 \mathrm{~nm}} \\
& =59,873 \mathrm{eV}
\end{aligned}
$$

d) The kinetic energy of the electron is

$$
\begin{aligned}
E_{\gamma} & =E_{\gamma}^{\prime}+E_{k e} \\
62,000 \mathrm{eV} & =59,873 \mathrm{eV}+E_{k e} \\
E_{k e} & =2127 \mathrm{eV}
\end{aligned}
$$

e) The angle with the conservation of y-component of the momentum.

$$
0=p_{\gamma}^{\prime} \sin \theta-p_{e}^{\prime} \sin \phi
$$

The momentum of the photon is found with

$$
\begin{gathered}
E^{\prime}=p_{\gamma}^{\prime} c \\
59,873 \cdot 1.602 \times 10^{-19} \mathrm{~J}=p_{\gamma}^{\prime} \cdot 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
p_{\gamma}^{\prime}=3.197 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}}
\end{gathered}
$$

The momentum of the electron is found with

$$
\begin{gathered}
E_{e}=\frac{p^{2}}{2 m} \\
2127 \cdot 1.602 \times 10^{-19} \mathrm{~J}=\frac{p_{e}^{\prime 2}}{2 \cdot 9.1094 \times 10^{-31} \mathrm{~kg}} \\
p_{e}^{\prime}=2.491 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}}
\end{gathered}
$$

The conservation equation then becomes

$$
\begin{gathered}
0=p_{\gamma}^{\prime} \sin \theta-p_{e}^{\prime} \sin \phi \\
0=3.197 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}} \cdot \sin 45^{\circ}-2.491 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}} \cdot \sin \phi \\
0=3.197 \cdot \sin 45^{\circ}-2.491 \cdot \sin \phi \\
\phi=65.1^{\circ}
\end{gathered}
$$

16. The diffusion angle is found with

$$
\Delta \lambda=2.4263 \times 10^{-3} \mathrm{~nm} \cdot(1-\cos \theta)
$$

To find the angle, we need the wavelength shift. This shift is found with the wavelengths before and after the collision.

The initial wavelength is

$$
\begin{gathered}
E=\frac{1240 \mathrm{eVnm}}{\lambda} \\
50,000 \mathrm{eV}=\frac{1240 \mathrm{eVnm}}{\lambda} \\
\lambda=0.0248 \mathrm{~nm}
\end{gathered}
$$

The wavelength after the scattering is

$$
\begin{gathered}
E^{\prime}=\frac{1240 \mathrm{eVnm}}{\lambda^{\prime}} \\
49,500 \mathrm{eV}=\frac{1240 \mathrm{eVnm}}{\lambda^{\prime}} \\
\lambda^{\prime}=0.02505 \mathrm{~nm}
\end{gathered}
$$

So, the wavelength shift is

$$
\begin{aligned}
\Delta \lambda & =\lambda^{\prime}-\lambda \\
& =0.02505 \mathrm{~nm}-0.0248 \mathrm{~nm} \\
& =0.00025 \mathrm{~nm}
\end{aligned}
$$

Therefore, the angle is

$$
\begin{gathered}
\Delta \lambda=2.4263 \times 10^{-3} \mathrm{~nm} \cdot(1-\cos \theta) \\
0.00025 \mathrm{~nm}=2.4263 \times 10^{-3} \mathrm{~nm} \cdot(1-\cos \theta) \\
\theta=26.3^{\circ}
\end{gathered}
$$

17. The wavelength is

$$
\begin{aligned}
\lambda & =\frac{h}{p} \\
& =\frac{h}{m v} \\
& =\frac{6.626 \times 10^{-34} \mathrm{Js}}{1.6726 \times 10^{-27} \mathrm{~kg} \cdot 10^{4} \frac{\mathrm{~m}}{s}} \\
& =3.96 \times 10^{-11} \mathrm{~m}=0.0396 \mathrm{~nm}
\end{aligned}
$$

18. As the speed is close to the speed of light, the relativistic momentum formula must be used. The wavelength is, therefore,

$$
\begin{aligned}
\lambda & =\frac{h}{p} \\
& =\frac{h}{\gamma m v} \\
& =\frac{1}{\sqrt{\sqrt{1-\left(\frac{2 \times 10^{\frac{m}{m}}}{3 \times 10^{\frac{8}{m}}}\right)^{2}}} \cdot 1.6726 \times 10^{-27} \mathrm{~kg} \cdot 2 \times 10^{8} \frac{\mathrm{~m}}{s}} \\
& =1.476 \times 10^{-15} \mathrm{~m}
\end{aligned}
$$

19. The wavelength is given by

$$
\lambda=\frac{h}{p}=\frac{h}{m v}
$$

The speed will be found from the kinetic energy.
With a 10 eV kinetic energy, the speed of the electron is

$$
\begin{gathered}
E_{k}=\frac{1}{2} m v^{2} \\
10 \cdot 1.602 \times 10^{-19} \mathrm{~J}=\frac{1}{2} \cdot 9.1094 \times 10^{-31} \mathrm{~kg} \cdot v^{2} \\
v=1.875 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Thus, the wavelength is

$$
\begin{aligned}
\lambda & =\frac{h}{m v} \\
& =\frac{6.626 \times 10^{-34} \mathrm{JS}}{9.1094 \times 10^{-31} \mathrm{~kg} \cdot 1.875 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =3.879 \times 10^{-10} \mathrm{~m}=0.3879 \mathrm{~nm}
\end{aligned}
$$

20. With a 6 eV kinetic energy, the speed of the electron is

$$
\begin{gathered}
E_{k}=\frac{1}{2} m v^{2} \\
6 \cdot 1.602 \times 10^{-19} \mathrm{~J}=\frac{1}{2} \cdot 9,1094 \times 10^{-31} \mathrm{~kg} \cdot v^{2} \\
v=1.453 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Thus, the wavelength is

$$
\begin{aligned}
\lambda & =\frac{h}{p} \\
& =\frac{h}{m v} \\
& =\frac{6.626 \times 10^{-34} \mathrm{Js}}{9.1094 \times 10^{-31} \mathrm{~kg} \cdot 1.453 \times 10^{6} \frac{\mathrm{~m}}{s}} \\
& =5.007 \times 10^{-10} \mathrm{~m}=0.5007 \mathrm{~nm}
\end{aligned}
$$

When U increases to 2 eV , the kinetic energy decreases to 4 eV . The speed of the electron is then

$$
\begin{gathered}
E_{k}=\frac{1}{2} m v^{2} \\
4 \cdot 1.602 \times 10^{-19} \mathrm{~J}=\frac{1}{2} \cdot 9.1094 \times 10^{-31} \mathrm{~kg} \cdot v^{2} \\
v=1.186 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

And the wavelength is

$$
\begin{aligned}
\lambda & =\frac{h}{p} \\
& =\frac{h}{m v} \\
& =\frac{6.626 \times 10^{-34} \mathrm{Js}}{9.1094 \times 10^{-31} \mathrm{~kg} \cdot 1.186 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =6.132 \times 10^{-10} \mathrm{~m}=0.6132 \mathrm{~nm}
\end{aligned}
$$

The change in wavelength is, therefore,

$$
\begin{aligned}
\Delta \lambda & =\lambda^{\prime}-\lambda \\
& =0.6132 \mathrm{~nm}-0.5007 \mathrm{~nm} \\
& =0.1125 \mathrm{~nm}
\end{aligned}
$$

21. The distance x is the distance between the order-2- maxima. The position of these maxima will be found with

$$
d \sin \theta=m \lambda
$$

We have d but not λ. We will find this wavelength with h / p.
With a 2 eV kinetic energy, the speed of the electron is

$$
\begin{gathered}
E_{k}=\frac{1}{2} m v^{2} \\
2 \cdot 1.602 \times 10^{-19} \mathrm{~J}=\frac{1}{2} \cdot 9.1094 \times 10^{-31} \mathrm{~kg} \cdot v^{2} \\
v=8.3877 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

The wavelength is

$$
\begin{aligned}
\lambda & =\frac{h}{p} \\
& =\frac{h}{m v} \\
& =\frac{6.626 \times 10^{-34} \mathrm{Js}}{9.1094 \times 10^{-31} \mathrm{~kg} \cdot 8.3877 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =8.672 \times 10^{-10} \mathrm{~m}=0.8672 \mathrm{~nm}
\end{aligned}
$$

Therefore, the angle of the order- 2 maximum is

$$
\begin{gathered}
d \sin \theta=m \lambda \\
0.1 \times 10^{-6} m \cdot \sin \theta=2 \cdot 8.672 \times 10^{-10} m \\
\theta=0.9938^{\circ}
\end{gathered}
$$

The distance from the central maximum to the order 2 maximum is, therefore,

$$
\begin{gathered}
\tan \theta=\frac{y}{L} \\
\tan \left(0.9938^{\circ}\right)=\frac{y}{300 \mathrm{~cm}} \\
y=5.204 \mathrm{~cm}
\end{gathered}
$$

The distance between the two order 2 maxima is twice as big. Therefore, it is 10.408 cm .
22. The uncertainty of the momentum is

$$
\begin{aligned}
\Delta p & =p_{\max }-p_{\min } \\
& =2.05 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}}-2 \times 10^{-23} \frac{\mathrm{kgm}}{\mathrm{~s}} \\
& =5 \times 10^{-25} \frac{\mathrm{kgm}}{\mathrm{~s}}
\end{aligned}
$$

Therefore, the uncertainty of the position is

$$
\begin{gathered}
\Delta x \Delta p=h \\
\Delta x \cdot 5 \times 10^{-25} \frac{\mathrm{kgm}}{\mathrm{~s}}=6.626 \times 10^{-34} \mathrm{Js} \\
\Delta x=1.325 \times 10^{-9} \mathrm{~m}=1.325 \mathrm{~nm}
\end{gathered}
$$

23. The uncertainty of the energy is

$$
\begin{gathered}
\Delta E \Delta t=h \\
\Delta E \cdot 10^{-8} \mathrm{~s}=6.626 \times 10^{-34} \mathrm{Js} \\
\Delta E=6.626 \times 10^{-26} \mathrm{~J}=4.136 \times 10^{-7} \mathrm{eV}
\end{gathered}
$$

