
 
 

 

A 1 kg bob is at the end of 20 m long rope to form a pendulum. It 

has a speed of 5 m/s when it is at the equilibrium position. What is 

the speed of the bob when the angle is 10°? 
 

 

 
www.michaelfreemanphoto.com/media/1714951c-8d53-11e1-b996-f18e61a19d8d-foucault-pendulum 

 

Discover how to solve this problem in this chapter. 
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Description of the Motion with a Sine Function 

 

When an object is oscillating, it passes continuously from 

one side to the other of a position called the equilibrium 

position. This could be, for example, a pendulum. In this 

case, the mass passes alternately from one side of the 

equilibrium position, which is at the lowest point of the 

motion of the pendulum, to the other. 

 

If the equilibrium position is set at x = 0, then the position 

takes alternately positive and negative values. The graph of 

the position of the object over time could look like the 

following graph. 
 

 
 

 

The graph can take a variety of forms. The only thing pointing to the fact that there is an 

oscillation is the repetition of an identical motion at each cycle. 

 

There is, however, an important case: the oscillating motion described by a sinusoidal 

function. This motion is called harmonic oscillation. Then, the position is given by the 

function 
 

2
sinx A t

T

π 
=  

 
 

 

(Correctly, this is a simple harmonic motion. In a complex harmonic motion, the motion is 

described by adding several sine functions.) 

 

Here is an example of a harmonic oscillation motion. The formula 
 

 

2
3 sin

2
x cm t

s

π 
= ⋅  

 
 

 



Luc Tremblay   Collège Mérici, Québec 

 

2025 Version  1-Harmonic Oscillations 3 

 

The graph on the right describes this 

motion. 

 

In this clip, the graph of the position as a 

function of time for a mass-spring system 

(which is a system making a harmonic 

oscillation) can be seen. It is similar to the 

graph showed. 

http://www.youtube.com/watch?v=T7fRGXc9SBI 

 

In the formula, A is the amplitude of the motion. The height of the sine function can be 

adjusted with this parameter. Normally, a 

sine has a maximum value of 1 and a 

minimum value of -1. Multiplying by A 

allows the sine to have a maximum value 

of A and a minimum value of -A. This 

amplitude indicates the greatest possible 

distance between the object and the 

equilibrium position. In the example at 

the top of the page, the amplitude is 3 cm. 

 

T is the period of the motion. It indicates 

the time it takes for the object to make 

one complete cycle of the oscillation. 

Normally, a sine has a period of 2π (in 

radians). By multiplying the time by 

2π/T, the sine will then have a period of 

T. In the example at the top of the page, 

the period is 2 seconds. 

 

 

Common Mistake: Using a Calculator in Degree 

Mode 

 

The values in the trigonometric functions are in radians in this chapter. It is very common 

to see people forgetting to put their calculator in radian mode and getting incorrect values. 

 

f is the frequency. It indicates the number of oscillations made by the object in one second. 

It is measured in hertz (Hz), which are s-1. 

 

Obviously, there is a link between the period and the frequency since the more oscillations 

the objects make per second, the smaller the period is. If the object makes 10 oscillations 

per second, then each oscillation lasts 0.1 s (1 second/10). If the object makes 

50 oscillations per second, then each oscillation lasts 0.02 s (1 second / 50). Therefore, 
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Link between T and f 

1
T

f
=  

 

The sine function can, therefore, be written  
 

( )sin 2x A ftπ=  

 

The quantity 2πf comes back continually in the study of harmonic oscillations. Physicists 

got tired of writing it and decided to use a symbol to represent it. It is the angular frequency. 

 

Definition of Angular Frequency 

2
2 f

T

π
ω π= =  

 

The angular frequency is in rad/s, and it represents the number of cycles of the oscillation 

made during a time of 2π seconds. 

 

The sine function can now be written  
 

( )sinx A tω=  
 

Still, this is not the most general formula to describe harmonic oscillations, even if the 

amplitude and the period can be adjusted. The beginning of the motion must also be 

adjusted. The oscillation motion does not necessarily start at x = 0 as it is required with a 

sine function. For example, the oscillation motion could also begin at the maximum 

position as shown in this graph. 
 

 
 

This graph is not the graph of a sine function. Something must be changed in the sine 

function to represent this function. In fact, the shape of the function has not changed; the 

sine function has only moved along the time axis. This is a simple translation of the 

function. 

 

On this graph, the sine function is shifted by ∆t towards the left. 
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The dotted axes represent the original axes of the function, before the shift. With these 

dotted line axes, we still have the graph of a sine function. The equation is, therefore, 
 

( )sinx A tω′ ′=  

 

The continuous line axes are the new axes. With these axes, the sine function does not 

begin at zero. The equation of this new sine function can be determined by finding the laws 

of transformation between coordinates x′ and t′ and the coordinates x and t. As the height 

above the horizontal axes was not changed by the translation, the values of x were not 

changed. 
x x′ =  

 

The points on the graph are, however, not at the same distance from the vertical axis since 

the x′-axis has been moved by ∆t towards the left.  
 

 
 

The coordinate transformations are then 
 

t t t′ = + ∆  
 

Using these transformations law in the sine function, the equation of this graph with the 

axes x and t is obtained. 
 

( )
( )( )

( )

sin

sin

sin

x A t

x A t t

x A t t

ω

ω

ω ω

′ ′=

= + ∆

= + ∆

 

 

since ω and ∆t are constants, their product is also a constant. This new constant is denoted 

φ, and is called the phase constant. 
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tφ ω= ∆  

 

Therefore, the most general equation for a harmonic oscillation motion is  

 

Position as a Function of Time for a Harmonic Oscillation 
 

( )sinx A tω φ= +  

 

Note that the expression inside the parenthesis is called the phase of the sine function. (This 

is a general term in mathematics, and it does not only apply to harmonic oscillations.) 

 

Let’s take a closer look at this phase constant that allows the sine to be shifted. Since 

ω = 2π/T, we can write 
 

2

t

t
T

φ ω

π

= ∆

= ∆
 

 

The result is 

 

Phase Constant 
 

2
t

T
φ π

∆
=  

 

Let’s illustrate this with a few simple examples. We will start with the graph of a sine 

function with a zero phase constant. In this case, the sine is not shifted, and it starts at 0 

with a positive slope. 
 

 
 

If the sine is shifted by one-quarter of a cycle, we have 
 

1

4

t

T

∆
=  

 

and the phase constant is 
 

1
2

4 2

π
φ π= ⋅ =  
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Here is the graph of this sine function shifted by one-quarter cycle to the left. 
 

 
 

With φ = π/2, the sine function always starts at a maximum with zero slope. 

 

If the sine is shifted by one-half of a cycle, we have 
 

1

2

t

T

∆
=  

 

and the phase constant is 
 

1
2

2
φ π π= ⋅ =  

 

Here’s the graph of this sine function shifted by one-half a cycle to the left. 
 

 
 

With φ = π, the sine function always starts at 0 with a negative slope. 

 

If the sine is shifted by three-quarters of a cycle, we have 
 

3

4

t

T

∆
=  

 

and the phase constant is 
 

3 3
2

4 2

π
φ π= ⋅ =  

 

Here is the graph of this sine function shifted by three-quarters of a cycle to the left. 
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With φ =3π/2, the sine function always starts at a minimum with zero slope. 

 

There is no need to use a phase constant of 2π since the function then shifts a full cycle and 

we are back to the same function. 

 

Positive phase constants cause the sine function to shift towards negative x's. To shift the 

sine function towards the positive x's, simply use a negative phase constant. For example, 

here’s a graph of a sine function shifted by one quarter of a cycle to the right (which means 

that φ = –π/2). 
 

 
 

You may notice that this graph is identical to the graph for φ =3π/2. This is normal since 

the difference between −π/2 and 3π/2 is equal to 2π. When 2π is added or subtracted to the 

phase constant, the exact same graph is obtained. Therefore, you can add or subtract 2π to 

the phase constant as much as you want without changing the graph. 

 

You may have already noticed that the graph of a cosine function is obtained when the 

phase constant is π/2. This means that it is also possible to describe harmonic oscillations 

with a cosine function. It is correct to do so, and some books on oscillations do indeed use 

a cosine function. You can quickly switch from one to the other with the following 

trigonometric identity. 
 

( ) ( )2
sin cost t πω φ ω φ+ = + −  

 

Here a some of these transformations. 
 

( ) ( )
( ) ( )

2
sin cos

sin 4.206 cos 2.635

t t

t t

πω π ω

ω ω

+ = +

+ = +
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( ) ( )sin 0.902 cos 0.669t tω ω+ = −  

 

The phase constant is always smaller by π/ 2 with the cosine function than with the sine 

function. 

 

The following identities can also be useful sometimes. 
 

( )

( ) ( )

( )

( ) ( )

sin cos
2

sin sin

3
sin cos

2

sin 2 sin

t t

t t

t t

t t

π
ω ω

ω π ω

π
ω ω

ω π ω

 + = 
 

+ = −

 + = − 
 

+ =

 

 

The amplitude of the oscillation is never negative. A minus sign in front of the function is 

a hidden phase constant of π, as indicated in the second identity. Thus, the equation 

x = -3 sin (2t), is actually the same equation as x = 3 sin (2t + π), which clearly shows that 

the amplitude is 3 (and not - 3). 

 

 

Velocity and Acceleration 

 

With the position as a function of time, the velocity and the acceleration of the object as 

functions of time can be found. Since the velocity is 
 

dx
v

dt
=  

 

the velocity in a harmonic motion is 

 

Velocity as a Function of Time for a Harmonic Oscillation 

 

( )cosv A tω ω φ= +  

 

As the cosine can only take values between -1 and 1, the largest value for the speed is  

 

Maximum Speed 

 

maxv Aω=  

 

Since the acceleration is 
 

dv
a

dt
=  
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the acceleration in a harmonic motion is 

 

Acceleration as a Function of Time for a Harmonic Oscillation 

 

( )2 sina A tω ω φ= − +  

 

As a sine function can only take values between -1 and 1, the largest value of the 

acceleration (in absolute value) is 

 

Maximum Acceleration 

 
2

maxa Aω=  

 

Here are the graphs of the position, velocity, and acceleration for a harmonic motion. 

 

 
 

It can be noted that the speed is zero when the position and the acceleration are maximum 

(positive or negative) and that the position and acceleration are both zero when the speed 

is maximum. This means that the object reaches its maximum speed at the equilibrium 

position. 

 

You can marvel at these graphics in action in the next clip. 

http://www.youtube.com/watch?v=eeYRkW8V7Vg 
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Link between Position and Velocity 

 

A very useful link between the position and the velocity for an object performing a 

harmonic oscillation can be found by using the following trigonometric identity. This 

formula is obtained from the formulas for position and velocity. 
 

( ) ( )sin      and     cosx A t v A tω φ ω ω φ= + = +  

 

First, solve these equations for the sine and cosine functions 
 

( ) ( )sin =           cos
x v

t t
A A

ω φ ω φ
ω

+ + =  

 

and then use this property of sine and cosine functions 
 

( ) ( )2 2sin cos 1t tω φ ω φ+ + + =  

 

To obtain 
 

2 2

1
x v

A Aω
   + =   
   

 

 

Multiplying by A², the following link is obtained. 

 

Link between x and v at Some Instant 
 

2

2 2v
x A

ω
 + = 
 

 

 

 

Link between Position and Acceleration 

 

The position and the acceleration are given by 
 

( ) ( )2sin      and     sinx A t a A tω φ ω ω φ= + = − +  

 

Then, it can be noted that 
 

( )
( )

2

2

sin

sin

a A t

a A t

ω ω φ

ω ω φ

= − +

= − +  
 

 

and, therefore, that 

 

Link between x and a at Some Instant 
 

2
a xω= −  
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Condition to Have a Harmonic Oscillation  
 

This last equation is also the sufficient condition to have a harmonic oscillation. When a 

system is analyzed by finding the forces acting on an object in order to determine its 

acceleration, it can be concluded that the motion of the object is a harmonic oscillation if 

the following result is obtained. 

 

Condition for a Harmonic Oscillation 
 

( )constanta x= −  

 

Moreover, the value of the constant gives ��, and this can be used to calculate the 

frequency and the oscillation period. This idea will be used later to determine whether some 

systems are doing a harmonic oscillation or not. 

 

The minus sign in front of the constant is very important. 

It indicates that the acceleration, and hence the force, is 

opposed to the displacement. Thus, if the object is to the 

right of the equilibrium position, the force is towards the 

left. If the object is to the left of the equilibrium position, 

the force is towards the right. In this case, the force 

always brings the object back to the equilibrium position, which is necessary to obtain an 

oscillation. 

 

If there were a positive sign, there would be no oscillations. To the right of the equilibrium 

position, the force would be towards the right and to the 

left of the equilibrium position, the force would be 

towards the left. These forces would push the object away 

from the equilibrium position rather than bring it back. 

The object then moves away from the equilibrium 

position and never returns to the equilibrium position. 

There is no oscillation in this case. 

 

 

Graphical Interpretation 
 

The condition to get a harmonic oscillation can be written, using 
 

net
F ma=  

 

as 
 

2

net
F m xω= −  

 

Since mω² is also a constant, the graph of the force must be a 

straight line with a negative slope to have a harmonic 
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oscillation. In addition, the slope of this graph allows finding ω since the slope must be  
 

2Slope mω= −  
 

The equilibrium position is at F = 0, so at the place where the F line crosses the x-axis. The 

slope of this graph determines the frequency of the oscillations. 

 

 

Importance of Harmonic Oscillations 
 

The equations for harmonic oscillations are important 

even if the graph of the net force acting on a system is 

not a straight line. For example, the graph of the force 

on the top part of this diagram is not a straight line and 

the oscillation of the system on which this force acts 

is not harmonic. 

 

However, for low-amplitude oscillations, the object 

stays near the point of equilibrium. Close enough to 

the point of equilibrium, any function will be a straight 

line. This means that with small amplitude 

oscillations, the oscillation is always harmonic, 

regardless of the system. 

 
Example 1.1.1 

 

An object is performing a harmonic oscillation along the x-axis. Its position is given by 
 

( )0.2 sin 2 0.8rad
s

x m t rad= ⋅ ⋅ +  

 

Here is the graph of this motion. 

 

 
 

a) What is the period of this motion? 

 

The period is 
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1

2

2

2

3.142

T

s

s

π
ω

π
−

=

=

=

 

 
b) What is the velocity of the object at t = 1 s? 

 

The velocity is the derivative of the position. Therefore, it is 
 

( )
( )

( )

1

cos

0.2 2 cos 2 0.8

0.4 cos 2 0.8

rad
s

m rad
s s

v A t

m s t rad

t rad

ω ω φ
−

= +

= ⋅ ⋅ ⋅ +

= ⋅ ⋅ +

 

 

At t = 1 s, the velocity is 
 

( )0.4 cos 2 1 0.8

0.377

m rad
s s

m
s

v s rad= ⋅ ⋅ +

= −
 

 
c) What is the velocity of the object at x = 0.1 m? 

 

The velocity is found with 
 

( ) ( )
2

2

2

2 2

2
2 2

1

2

0.1 0.2
2

0.12

0.3464

m

s

m
s

v
x A

v
m m

s

v

v

ω

−

 + = 
 

 
+ = 
 

=

= ±

 

 

This velocity can be positive or negative because the object passes at a specific 

position twice in a cycle. Once while moving away from the equilibrium position 

and once while going towards the equilibrium position. 

 
d) When will the object be at x = 0.1 m and have a positive velocity for the first time? 

(If the motion begins at t = 0 s (which is what is assumed most of the time)). 

 

If the object is at x = 0.1 m, then 
 

( )0.1 0.2 sin 2 0.8rad
s

m m t rad= ⋅ ⋅ +   

 

If this equation is solved for t, the result is 
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( )

( )

1 1

0.1 0.2 sin 2 0.8

1
sin 2 0.8

2

5
2 0.8 or 2 0.8

6 6

0.1382 or 0.9090

rad
s

rad
s

m m t rad

t rad

s t s t

t s t s

π π− −

= ⋅ ⋅ +

= ⋅ +

= ⋅ + = ⋅ +

= − =

 

 

(See the note on the inverse sine functions following this example to understand 

why there are two answers.) 

 

To determine which of these two answers is good, the velocity at these two 

instants must be calculated. 
 

( )
( ) ( )

0.4 cos 2 0.8

0.4 cos 2 0.1382 0.8 or 0.4 cos 2 0.9090 0.8

0.3464 or 0.3464

m rad
s s

m rad m rad
s s s s

m m
s s

v t rad

v s rad v s rad

v v

= ⋅ ⋅ +

= ⋅ ⋅− + = ⋅ ⋅ +

= = −

 

 

As it was specified that the velocity is positive, the correct answer must be 

t = - 0.1382 s. 

 

However, as the motion begins at t = 0, a negative value of t is unacceptable. It is 

possible to obtain a negative value for t because, mathematically, the sine function 

extends all the way from –∞ to ∞. A correction to this answer must, therefore, be 

made to obtain a positive answer. 

 

Actually, there are several other possible values of t because the motion is always 

repeating itself. If the object is at x = 0.1 m at some instant, it will also be there a 

period later. It will again return to this position another period later and so on. By 

adding the period to the obtained t values, many other possible answers are 

obtained. Therefore, the other possible answers are 

 

3.142 3.142

0.1382 3.003 6.145

s s

s s s

+ +

− → →
 

 

The smallest positive value is thus 3.003 s. This is the answer. 

 
Common Mistake: Not finding all the solutions to 

the inverse sine or inverse cosine functions.  

Be aware that there are several answers to arcsin and arccos functions. The 

two primary solutions are 
 

Arcsin: answer given by the calculator     and     π – answer given by the calculator 

Arccos: answer given by the calculator     and     – answer given by the calculator 
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Actually, there is an infinite number of solutions to an arcsin and an arccos function. They 

can all be found by adding or subtracting as many 2π as we want to these two primary 

solutions. Actually, something simpler can be done to find the other solutions because the 

only thing that is calculated here with arcsin and arccos functions are times. Once the values 

of t corresponding to the two primary solutions are obtained, all the other solutions can be 

found by adding or subtracting the period as many times as needed to each of these 

solutions. Remember that negative values of t cannot be kept for a harmonic oscillation 

since it is assumed that the motion begins at t = 0. 

 

 

How to Find A if x and v at Some Instant Are Known 
 

A can easily be found if x and v are known at any given time using the formula linking x to 

v, because the amplitude is present in this equation.  
 

2

2 2 v
A x

ω
 = +  
 

 

 

To calculate A with this formula, be sure to use the values of x and v at the same time 

(which is not necessarily t = 0). 

 

 

How to Find φ if x and v at Some Instant Are Known 
 

With graphs, we have seen that it is relatively easy to find φ when the shift of the sine 

function is ¼, ½ or ¾ of a cycle. It’s more difficult for the other values of φ. 

 

If the position for a certain value of t is known, we can obviously try to find φ with the 

following formula. 
 

( )sinx A tω φ= +  

 

Using the values of x and t, φ will be the only remaining unknown provided that ω and A 

are known.  However, there will be a small problem. Since there are two main solutions to 

an arcsine function, we’re going to obtain 2 values of φ. How can we know which of the 

2 values is the right answer? 

 

To choose between the 2 values of φ, you need to have information about the speed at time 

t. The sign of the speed may be enough. Just use the two values of φ obtained with the 

arcsine in the velocity formula. One of the values of φ is going to give a positive velocity, 

and the other value of φ is going to give a negative velocity. Keep the value of φ which 

gives the right sign for the speed. 
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Example 1.1.2 
 

A system oscillates with a period of 2 s and an amplitude of 5 cm. At t = 0 s, the object is 

at x = 3 cm, and its velocity is negative. What is the value of the phase constant? 
 

 
 

It is difficult to accurately assess the value of the phase constant from the graph. So, 

we’re going to calculate it. 

  

We know that the amplitude is 5 cm, and we could easily find the value of ω from T 

(but we’ll see that we don’t even need to know the value of ω here). So, the equation 

of motion is 
 

( )5 sinx cm tω φ= ⋅ +  

 

Since it is known that the object is at x = 3 cm at t = 0, the equation becomes 
 

( )3 5 sin 0

0.6 sin

0.6435 or 2.4981

cm cm sω φ

φ

φ φ

= ⋅ ⋅ +

=

= =

 

 

Now we need to find out which of these 2 answers is correct. We’re going to determine 

this with the sign of the velocity at t = 0. (Note that we could also do this with the 

graph since it indicates that the phase constant must be between π/2 (a shift of ¼ of a 

cycle towards the left) and π (a shift of ½ of a cycle towards the left). Therefore, 2.4981 

must be the correct value of φ.) 

 

The formula for velocity is 
 

( )cosv A tω ω φ= +  

 

At t = 0, the speed is 
 

( )cosv Aω φ=  

 

As A and ω are positive, the velocity will be negative if cos(φ) is negative. The values 

of cos(φ) with our two values of φ are 
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( ) ( )cos 0.6435 0.8 cos 2.4981 0.8= = −  

 

We then understand that φ = 2.4981 is the correct phase constant. 

 
If the value of v is known, all these complications (calculation of 2 responses of the arcsine 

and then calculation of the velocities) can be avoided by using another formula. This 

formula is obtained from the position and velocity formulas. 
 

 
 

First, solve these equations for the sine and cosine functions 
 

( ) ( )sin =           cos
x v

t t
A A

ω φ ω φ
ω

+ + =  

 

and then divide the sine by the cosine  
 

( )
( )

sin

cos

x
A

v
A

t

t ω

ω φ

ω φ

+
=

+
 

 

By substituting with tangent on the left and simplifying on the right, the following formula 

that allows to find the phase constant is obtained. 

 

φ calculation 
 

( )tan
x

t
v

ω
ω φ+ =  

 

To calculate φ with this formula, be sure to use the values of x and v at the same time (which 

is not necessarily t = 0). 

 

Be careful: 
 

- The value of φ is in radians. Set your calculator in radian mode to obtain the correct 

value. 
 

- If the value of v is negative, remember to add π radians to the answer given by the 

calculator. 
 

- If the speed is zero, the inverse tangent of ∞ or –∞ (the sign depends on the sign of 

x) must be calculated. Do not panic, the answer to these inverse tangents are π/2 

and –π/ 2 respectively. 

 

An arctangent function also has 2 main solutions (answer given by the calculator and 

π + answer given by the calculator). However, it is easy to know which of these two 

answers to take by following the 2nd rule: take the answer given by the calculator if the 

speed is positive and take π + the answer given by the calculator if the speed is negative. 

 

( ) ( )sin      and     cosx A t v A tω φ ω ω φ= + = +
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Example 1.1.3 
 

An object is performing a harmonic oscillation along the x-axis with a period of 

0.5 seconds. At t = 0 s, the object is at x = -3 cm and has a velocity of -40 cm/s. What is 

the equation giving the position of the object as a function of time? 

 

The value of the parameters in the following formula must be calculated. 
 

( )sinx A tω φ= +  

 

First, the angular frequency is calculated from the period. 
 

2

2

0.5

4 rad
s

T

s

π
ω

π

π

=

=

=

 

 

The amplitude is then found with 
 

( )

2

2 2

2

2 2

1

0.4
0.03

4

0.04374

m
s

v
x A

m A
s

A m

ω

π −

 
+ = 
 

− 
− + = 

 

=

 

 

Finally, the phase constant is calculated with 
 

( )

( ) ( )1

tan

4 0.03
tan 0

0.4

3
tan

10

3.8974

m
s

x
t

v

s m

rad

ω
ω φ

π
ω φ

π
φ

φ

−

+ =

⋅ −
⋅ + =

−

=

=

 

 

π was added to the answer given by the calculator because the velocity is negative. 

  

Therefore, the equation of motion is 
 

( )0.04374 sin 4 3.8974rad
s

x m t radπ= ⋅ ⋅ +  

 

This equation corresponds to the following graph. 
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In order to determine if a mass-spring system on a frictionless surface performs a harmonic 

motion, the relation between the acceleration and the position must be found to see if it 

meets the condition for a harmonic oscillation. Remember that this condition is 
 

( )constanta x= −  

 

Three forces act on the block: the weight (downwards), a normal force (upwards) and the 

force exerted by the spring (horizontal). The weight and the normal force cancel each other, 

and the only remaining force is the spring force. If the object is not at the equilibrium 

position (where the force exerted by the spring is zero), then  
 

xF ma

kx ma

k
a x

m

=

− =

 = − 
 


 

 

This equation has the same form as the condition. Thus, it can be concluded that  

 

The oscillations of a mass-spring system are harmonic oscillations. 

 

As the value of the constant (in parentheses) must also be equal to the square of the angular 

frequency, the angular frequency is 

 

Angular Frequency for a Mass-Spring System 
 

k

m
ω =  

 

From this equation, the period of oscillation of a mass-spring system can be found. It is 

 

2
T

π
ω

=  
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2
m

T
k

π=  

 

Here, a crucial and somewhat surprising fact is clear: the period of oscillation of a mass-

spring system does not depend on the amplitude. Whatever the amplitude of oscillations, 

the period is always the same! The greatest distance to travel with a larger amplitude is 

exactly offset by larger speeds. This is most surprising and occurs only for harmonic 

oscillations. For any other types of oscillations, the period depends on the amplitude. This 

gives a way to know if you are dealing with a harmonic oscillation: measure the period of 

oscillation for different amplitude. If the period does not depend on the amplitude, the 

system is performing a harmonic oscillation. 

 

The period of a harmonic motion does not depend on the amplitude of the motion. 

 

Galileo was the first to notice this by examining the oscillation of a chandelier hanging 

from the roof of a church during mass in 1583. As the amplitude decreased due to friction, 

he noticed that the period of oscillation remained the same. 

 

Will the system still perform harmonic oscillations if the system is 

vertical? In this case, is the force of gravity destroying the harmonic 

motion? To answer this question, the position of equilibrium must be 

found first. It is situated at the position where the sum of the forces 

acting on the object is zero. There, the spring is stretched a distance x� 

to cancel the force of gravity. 

 

Stretching of the Spring at the Equilibrium Position 

 

0kx mg=  

 

 

 

We will now check if we still have harmonic oscillations around 

this equilibrium position. As specified previously, the x = 0 must 

be at the equilibrium position (we will continue to use x for the 

position even if the motion is vertical). If the mass is a little 

lower than the equilibrium position, Newton’s second law gives 

(with an axis directed downwards) 

 

( )0

0

x
F ma

mg k x x ma

mg kx kx ma

=

− + =

− − =


 

 

However, as mg = kx0 (position of equilibrium formula), the 

equation becomes 
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mg 0kx kx− − ma

k
a x

m

=

 = − 
 

 

 

This still meets the requirement for a harmonic motion, and the angular frequency is the 

same as it was for a horizontal motion. The period of oscillation of a vertical mass-spring 

system is thus identical to the period of a system 

oscillating on a frictionless horizontal surface. 

 

It is also possible to conclude, with a simple 

graph, that the frequency does not change. 

Without gravity, the graph is the graph of the 

force F = - kx. This graph (a straight line with a 

negative slope) is exactly the graph required to 

have a harmonic oscillation. 

 

 

By adding the gravity mg to this force, the curve moves upwards by mg and the graph on 

the right is now obtained. 

 

This graph now indicates that the equilibrium 

position (the place where the F line intersects the 

axis) has changed, but the oscillation frequency 

has not changed since the slope of the line 

remained the same. 

 

The following convention in a mass-spring 

system will be used: the x-value is positive when 

the spring is stretched. 

 

Example 1.2.1 

 

A 200 g object is connected to a spring having a constant k = 5 N/m. The spring is stretched 

10 cm, and the mass is released (no initial speed is given to the mass). 

 

a) What is the period of the motion? 

 

Let start by calculating the angular frequency. 
 

5

0.2

5

N
m

rad
s

k

m

kg

ω =

=

=
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With ω, the period can then be found. 
 

2

1.2566

T

s

π
ω

=

=

 

 

 

b) What is the equation of the position of the object as a function of time? 

 

The equation of the position is ( )sinx A tω φ= + , ω is known. A and φ must then 

be found. 

 

 A is calculated with 
 

( )

2

2 2

2

2 2

1

0
0.10

5

0.10

m
s

v
x A

m A
s

A m

ω

−

 
+ = 
 

 
+ = 
 

=

 

 

φ is calculated with 
 

( )

( )
1

tan

5 0.1
tan 0

0

tan

2

m
s

x
t

v

s m

rad

ω
ω φ

ω φ

φ

π
φ

−

+ =

⋅
⋅ + =

= ∞

=

 

 

The equation is thus 
 

0.1 sin 5
2

rad
s

x m t rad
π 

= ⋅ ⋅ + 
 

 

 

 

c) What is the maximum speed of the object? 

 

The maximum speed is  

 

max

10.1 5

0.5 m
s

v A

m s

ω
−

=

= ⋅

=
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d) What is the maximum acceleration of the object? 

  

The maximum acceleration is 
 

( )
2

2

max

2
0.10 5

2.5

rad

s

m

s

a A

m

ω=

= ⋅

=

 

 
e) What are the first three instants at which the velocity of the object is 0.3 m/s? 

 

The velocity formula 
 

( )
1

cos

0.1 5 cos 5
2

0.5 cos 5
2

rad
s

m rad
s s

v A t

m s t rad

t rad

ω ω φ

π

π

−

= +

 = ⋅ ⋅ ⋅ + 
 

 = ⋅ ⋅ + 
 

 

 

If the velocity is 0.3 m/s, then 
 

1 1

0.3 0.5 cos 5
2

0.6 cos 5
2

0.9273 5 0.9273 5
2 2

0.1287 0.4996

m m rad
s s s

rad
s

calculator calculator

t rad

t rad

s t s t

t s t s

π

π

π π
−

− −

 = ⋅ + 
 

 
= ⋅ + 

 

= ⋅ + − = ⋅ +

= − = −

ւ ց

 

 

None of these two answers is good because they are both negative. However, there 

is an infinite number of solutions to an inverse cosine function, and these other 

solutions are found by adding the period as many times as needed to these two 

answers. 
 

0.1287 0.4996

1.2566

1.1279 0.7570

1.2566

2.3845 2.0136

1.2566

3.6411 3.2702

t s t s

s

t s t s

s

t s t s

s

t s t s

= − = −

↓ +

= =

↓ +

= =

↓ +

= =
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Therefore, the first three moments are 

 

 t = 0.7570 s, t = 1.1279 s, and t = 2.0136 s. 

 

 

 

Energy Formula 

 

Energy can take two forms in a harmonic oscillation: kinetic energy (Ek) and potential 

energy (U). For example, in a mass-spring system, there are kinetic energy and spring 

potential energy. Mechanical energy is the sum of these two forms of energy. 

 

Mechanical Energy 

 

mec k
E E U= +  

 

 

Kinetic Energy 

 

As usual, the kinetic energy is 

 

Kinetic Energy 

 

21

2
k

E mv=  

 

 

Potential Energy 

 

Since 

 

dU
F

dx
= −  

 

the potential energy can be found with 

 
2

2

2

2 21

2

a x

F m x

dU
m x

dx

U m x Cst

ω

ω

ω

ω

= −

= −

− = −

= +
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Any value can be chosen for the integration constant. The simplest choice, of course, is to 

use zero.  

 

Potential Energy (always good) 
 

2 21

2
U m xω=  

 

It is important to point out the following fact. 

 

The potential energy must be proportional to x² to have a harmonic 

oscillation. 

 

For a mass-spring system, �� = k/m can be used to obtain 

 

Potential Energy (good only for the mass-spring system) 
 

21

2
S

U kx=  

 

Maybe you recognize (first equation) the spring energy formula obtained in mechanics. 

 

 

Potential Energy Graph 

 

The potential energy formula is 
 

2 21

2
U m xω=  

 

The graph of this potential energy is shown 

to the right. 
 

This graph shows that the object must stay 

between –A and A (since the object cannot 

be at locations where U is greater than Emec) 

and that its maximum speed is reached at the 

equilibrium position (where the gap between 

U and Emec is the largest).   

 

 

Proof of Mechanical Energy Conservation 
 

It can now be shown that mechanical energy is conserved in a harmonic motion. This is 

achieved by adding the kinetic and potential energies and by using the formulas for the 

velocity and position as a function of time. The end result shows that the energy does not 

depend on time. 
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( ) ( )

( ) ( )( )

2 2 2

2 2 2 2 2 2

2 2 2 2

2 2

1 1

2 2

1 1
cos sin

2 2

1
cos sin

2

1

2

mecE mv m x

mA t m A t

m A t t

m A

ω

ω ω φ ω ω φ

ω ω φ ω φ

ω

= +

= + + +

= + + +

=

 

 

As the result is a constant, mechanical energy is conserved. 

 

 

Mechanical Energy 
 

With this proof, the formula for the value of the mechanical energy was also obtained. 

 

Mechanical Energy 
 

2 21

2
mec

E m Aω=  

 

For a mass-spring system, ω2 = k/m can be used to obtain 

 

Mechanical Energy (good only for a mass-spring system) 
 

21

2
mec

E kA=  

 

In both cases, it can be seen that the mechanical energy is equal to the maximum value of 

the potential energy since the maximum value of x is A. Moreover, as ωA is the maximum 

speed, the mechanical energy is also 

 

Mechanical Energy 

 

2

max

1

2
mec

E mv=  

 

 

This formula also shows that the 

mechanical energy is equal to the maximum 

value of the kinetic energy. You can admire 

here the graph of the energies as functions 

of time. 
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Suppose that this is a mass-spring system. It is clear that the energy passes alternatively 

from kinetic energy to spring energy. Initially here, the object is at its maximum position, 

and its velocity is zero. The mechanical energy is then entirely in the form of spring energy 

since the spring is stretched to its maximum. As the object moves towards the equilibrium 

position, the spring energy decreases and the kinetic energy increases so that at the 

equilibrium position, all the mechanical energy is in the form of kinetic energy. Then the 

object moves away from its equilibrium position. This increases the spring energy and 

decreases the kinetic energy. When the object reaches its greatest distance from the 

equilibrium position, the kinetic energy is again zero and all the mechanical energy is back 

in the form of the energy of the spring. Then the process starts all over again.  

 

You can see in this video how the mechanical energy passes from one form to the other in 

a mass-spring system. 

http://www.youtube.com/watch?v=PL5g_IwrC5U 

 

Example 1.3.1 
 

A 200 g object is connected to a spring having a 5 N/m constant. The position of the object 

is given by 

( )0.1 cos 5 rad
s

x m t= ⋅ ⋅  

 

(For those who are wondering why the position is given by a cosine function rather than a 

sine function, this is just a sine function with a hidden π/ 2 phase constant.) 

 

 

a) What is the spring energy at t = 3 s? 

 

The spring energy (or potential energy) is 

 

21

2
S

U kx=  

 

The position at t = 3 s is needed to calculate the energy. This position is 

 

( )0.1 cos 5 3

0.07597

rad
s

x m s

m

= ⋅ ⋅

= −
 

 

Therefore, the spring energy is 

 

( )

2

2

1

2

1
5 0.07597

2

0.01443

S

N
m

U kx

m

J

=

= ⋅ ⋅ −

=
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b) What is the kinetic to energy at t = 3 s? 

 

Kinetic energy is 

21

2
k

E mv=  

 

The velocity is needed to calculate the kinetic energy. The formula 

v = Aωcos(ωt+ϕ) cannot be used since the equation of the position is written with 

a cosine function and not a sine function. To find the velocity, there are two 

options. 

 

1) Change the position formula so that it is written with a sine function. 

 

When changing from a cosine function to a sine function, the phase constant 

must be increased by π/2. Thus, the position is 
 

( )0.1 cos 5

0.1 sin 5
2

rad
s

rad
s

x m t

m t
π

= ⋅ ⋅

 
= ⋅ ⋅ + 

 

 

 

Then the formula v = Aωcos(ωt+ϕ) can be used to find the velocity. 
 

( )
1

cos

0.1 5 cos 5
2

0.5 cos 5
2

rad
s

m rad
s s

v A t

m s t

t

ω ω φ

π

π

−

= +

 = ⋅ ⋅ ⋅ + 
 

 = ⋅ ⋅ + 
 

 

 

At t = 3 s, the velocity is 
 

0.5 cos 5 3
2

0.3251

m rad
s s

m
s

v s
π = ⋅ ⋅ + 

 

= −

 

 

2) Calculate the derivative of the position formula. 
 

( )( )

( )
( )

1

0.1 cos 5

0.1 5 sin 5

0.5 sin 5

rad
s

rad
s

m rad
s s

dx
v

dt

d m t

dt

m s t

t

−

=

⋅ ⋅
=

= − ⋅ ⋅ ⋅

= − ⋅

 

 

At t = 3 s, the velocity is 
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( )0.5 sin 5 3

0.3251

m rad
s s

m
s

v s= − ⋅ ⋅

= −
 

 

The kinetic energy is thus 
 

( )

2

2

1

2

1
0.2 0.3251

2

0.01057

k

m
s

E mv

kg

J

=

= ⋅ ⋅ −

=

 

 
c) What is the mechanical energy at t = 3 s? 

 

Here are 3 ways to calculate the mechanical energy. 

 

1) Add the kinetic and potential energy at t = 3 s. 
 

0.01057 0.01443

0.025

mec kE E U

J J

J

= +

= +

=

 

 

2) Calculate the mechanical energy from the amplitude.  
 

( )

2

2

1

2

1
5 0.1

2

0.025

mec

N
m

E kA

m

J

=

= ⋅ ⋅

=

 

 

3) Calculate the mechanical energy from the maximum speed 

 

The maximum speed is 
 

max

10.1 5

0.5 m
s

v A

m s

ω
−

=

= ⋅

=

 

 

Thus, the energy is 
 

( )

2

max

2

1

2

1
0.2 0.5

2

0.025

mec

m
s

E mv

kg

J

=

= ⋅ ⋅

=
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Since the energy is constant, this value is the mechanical energy at any moment, 

not just at t = 3 s. 

 

 

 

Proof that Pendulum Motion is a Harmonic Motion (for Small 
Amplitudes) 
 

Is the pendulum complying with the condition to have a harmonic motion? A pendulum 

motion is a rotational instead of a linear motion. Without providing evidence, the harmonic 

motion condition for a rotational motion is 
 

( )constantα θ= −  

 

where the constant is always ω�. 

 

Let’s examine whether the pendulum respects this 

condition. A more complex case than a simple mass at 

the end of a rope is considered. We’ll do the verification 

for an object oscillating around a fixed axis. Two forces 

are acting on the pendulum: the weight and the force 

exerted by the axis. This last force is exerted on the axis 

of rotation, and thus exerts no torque. Only the force of 

gravitation exerts a torque on the pendulum (the positive 

direction shown in the diagram will be used for the sign 

of this torque). Newton’s second law for rotational 

motion gives 
 

( )sin 180

sin

I

mgd I

mgd I

τ α

θ α

θ α

=

− ° − =

− =



 

 

where d is the distance from the axis of rotation to the centre of mass of the object. Solving 

this equation for the angular acceleration, we obtain 
 

sin
mgd

I
α θ 

= − 
 

 

 

Unfortunately, this is not the desired result because of the sine function. The pendulum 

would meet the condition if, instead of sin θ, we would have had only θ. 

 

This means that the pendulum motion is not a harmonic motion. It is an oscillation motion, 

but it is not a harmonic motion. The motion is described by another function more complex 

than a simple trigonometric function (the exact solution involves elliptic functions, which, 
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normally, you do not know). The graph of the torque as a function of the angle (graph 

of τ = – mgd sinθ) also confirms that we do not have the conditions to get a harmonic 

oscillation since the graph is not a straight line with a negative slope. 
 

 
 

However, for angles less than 15°, the graph is. 
 

 
 

Now, this is really close to a straight line with a negative slope. This means that, for small 

angles (smaller than about 15 °), the oscillation will effectively be harmonic. 

 

This comes from the fact that at small angles, the following approximation can be made. 
 

sinθ θ≈  
 

With this approximation, the angular acceleration then becomes 
 

mgd

I
α θ 

= − 
 

 

 

This is the condition for having a harmonic oscillation. This means that for small-amplitude 

oscillations, the motion of the pendulum looks a lot like a harmonic oscillation. The angular 

frequency can even be found since the value inside the parenthesis must be equal to ��. 

Therefore  
 

mgd

I
ω =  
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Angular Frequency of a Simple Pendulum 
 

A simple pendulum is a point mass fixed at the end of a massless rope. The centre of mass 

of the pendulum is, therefore, at the centre of the point mass, and d is thus equal to the 

length of the rope. 

 

d = L 

 

As all the mass is concentrated in the point mass, the moment of inertia is 

 
2

2

I mr

I mL

=

=


 

 

Therefore, the angular frequency is 

 

2

mgd

I

mgL

mL

ω =

=

 

 

If this equation is simplified, it becomes 

 

Angular Frequency of a Simple Pendulum (Amplitude < 15°) 
 

g

L
ω =  

 

The period of the pendulum is, therefore, 
 

2

2

T

L
T

g

π
ω

π

=

=
 

 

(As early as 1637, Galileo had indicated that T L∝ . The complete formula was given by 

Huygens in 1673.) 

 

It can be noted once again that the period does not depend on the amplitude. This is normal; 

this is what happens with any harmonic oscillations. Here, there is another curiosity: the 

period does not depend on the mass of the pendulum! 

 

The period of a simple pendulum does not depend on its mass. 
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This is not so surprising if you think about it because the motion is caused by the force of 

gravity and this force gives the same acceleration to all objects, whatever their mass. 

 

The change of period with the length of the rope can be seen in this clip. The effects 

produced are very nice. 

http://www.youtube.com/watch?v=yVkdfJ9PkRQ 

 

 

Description of the Motion of a Simple Pendulum  
 

Knowing that the motion is a harmonic oscillation, the position can be described with a 

sine function. There are, however, two possibilities here to give this position. It can be 

given by the position x (measured along the arc of a circle) or by the angle θ (the angle 

between the rope and a vertical line). 

 

The position can then be given by 

 

Position of a Pendulum 
 

( )

( )max

sin

or

sin

x A t

t

ω φ

θ θ ω φ

= +

= +

 

 

The angle θ can be in degrees or in radians as needed. If it in 

degrees, there is no need to put your calculator in degree 

mode to calculate the position, since this angle is not inside a trigonometric function. In 

fact, you must leave your calculator in radian mode because ω is always in radians per 

second. Since the angle inside the trigonometric function is in radians, the calculator must 

be in radian mode. 

 

It is possible to switch easily from x to θ since the angle (in radians) is the length of the arc 

of a circle divided by the radius of the circle. This means that 

 

Link between x and θ  for a Pendulum 
 

( )rad

x

L
θ =  

 

With the maximum values of x (which is A) and θ (which is θmax), this equation becomes 

 

Link between A and θmax  for a Pendulum 
 

max( )rad

A

L
θ =  
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Common Mistake: Using the formulas of the 

previous sections and confusing θ  and x 

 

Note that you must use the position x in all the formulas from earlier 

sections and not θ. Sometimes, a person uses θ for the position instead of x for some 

calculations. This is a mistake. 

 
Example 1.4.1 
 

A pendulum consists of a mass attached at the end of a 1 m long rope. Initially (t = 0 s), 

the pendulum is at the position θ = 10 ° and is moving away from the equilibrium position 

with a speed of 50 cm/sec. 

 

a) What is the period? 

 

The angular frequency is 
 

9.8

1

N
kg

g

L

m

ω =

=

 

3.13 rad
s

=  
 

The period is then 
 

1

2

2

3.13

2.007

T

s

s

π
ω

π
−

=

=

=

 

 

(It is not a coincidence to have an answer so close to 2 seconds since, at one point, 

they tried to define the metre with a pendulum: the metre would have been the 

length of the pendulum having a period of 2 s. This idea was not followed, as g 

varies slightly from one place to another on Earth.) 

 
b) What is the equation of θ (in degrees) as a function of time? 

 

The equation of θ as a function of time is 
 

( )max sin tθ θ ω φ= +  

 

The value of ω is already known. The angular amplitude and the phase constant 

remains to be found, however. Those are found with 
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( )

2

2 2

tan

v
A x

x
t

v

ω
ω

ω φ

 = +  
 

+ =

 

 

To use these formulas, x and v at t = 0 must be known. The velocity is known 

(0.5 m/s) but not the position x. However, with the initial angular position (θ), the 

position can be calculated. 
 

( )

2
10 1

360

0.1745

rad
x L

rad
m

m

θ

π

=

= °⋅ ⋅
°

=

 

 

Therefore, the amplitude is 
 

( )

2

2 2

2

22

1

0.5
0.1745

3.13

0.2366

m
s

v
A x

A m
s

A m

ω

−

 
= +  

 

 
= +  

 

=

 

 

Then, the angular amplitude (maximum angle) can be calculated. 
 

max( )

0.2366

1

0.2366

rad

A

L

m

m

rad

θ =

=

=

 

 

In degrees, the maximum angle is 
 

max( )

360
0.2366

2

13.55

rad
rad

θ
π°

°
= ⋅

= °

 

 

The phase constant is 
 

( )

( )
1

tan

3.13 0.1745
tan

0.5

0.8295

m
s

x
t

v

s m

rad

ω
ω φ

φ

φ

−

+ =

⋅
=

=
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The equation for θ is thus 
 

( )13.55 sin 3.13 0.8295rad
s

t radθ = °⋅ ⋅ +  

 
c) What is the speed of the pendulum when the angle is 5°? 

 

When the position is known, the velocity can be calculated with 
 

2

2 2v
x A

ω
 + = 
 

 

 

But first, the position x when the angle is 5° must be found. To begin, we calculate 

the angle in radians 
 

( )
2

5
360

36

rad

rad

rad

π
θ

π

= °⋅
°

=

 

 

And then the position can be calculated 
 

( )

1
36

0.0873

rad
x L

rad m

m

θ

π

=

= ⋅

=

 

 

The speed is then 
 

( ) ( )

2

2 2

2
2 2

1
0.0873 0.2366

3.13

0.6883 m
s

v
x A

v
m m

s

v

ω

−

 + = 
 

 
+ = 
 

=

 

 
d) What is the maximum speed of the pendulum? 

 

The maximum speed is 

 

max

10.2366 3.13

0.741 m
s

v A

m s

ω
−

=

= ⋅

=
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Potential Energy of the Simple Pendulum 

 

As for any harmonic oscillation, the potential energy (which is gravitational energy for a 

pendulum) is 
 

2 21

2
g

U m xω=  

 

Using the value of ω for a pendulum, the potential energy becomes 

 

Potential Energy (good only for a pendulum) 
 

21

2
g

g
U m x

L
=  

 

Using x = θ(rad)L, this energy can also be written as 

 

Potential Energy (good only for a pendulum) 
 

21

2
g

U mgLθ=  

The angle is in radians in this formula. 

 

These formulas for the gravitational energy may seem a bit odd since we had seen in 

mechanics that the gravitational energy is mgy. However, it can easily be shown that from 

U = mgy, the aforementioned formulas of gravitational energy can be obtained. 

 

First, the relationship between y and θ in a pendulum 
 

( )1 cosy L θ= −  

 

must be used. Then, the Taylor development for the cosine function (which can be used for 

oscillations with a small amplitude), 
 

2

cos 1
2

θ
θ = − +…  

 

is used to obtain 
 

( )
2

2

1 cos

1 1
2

2

y L

L

L

θ

θ

θ

= −

  
= − −  

  

=

 

 

Using this in mgy, the gravitational energy becomes 
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2

2
g

L
U mgy mg

θ
= =  

 

which is the formula obtained previously. 

 

Example 1.4.2 

 

The pendulum in the diagram has a speed of 5 m/s when it is at 

the equilibrium position. What is the speed of the pendulum 

when the angle is 10°? 

 

At instant 1 (when the pendulum is at the equilibrium 

position), the mechanical energy is 
 

( )

2 2

2

1 1

2 2

1
1 5 0

2

12.5

k

m
s

E E U

mv mgL

kg

J

θ

= +

= +

= ⋅ ⋅ +

=

 

 

At instant 2, (when the angle is 10° = π/18 rad), the mechanical energy is 
 

2 2

2

2

2

1 1

2 2

1 1
1 1 9.8 20

2 2 18

0.5 2.985

N
kg

E mv mgL

kg v kg m rad

kg v J

θ

π

′ = +

 = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ 
 

= ⋅ +

 

 

Mechanical energy conservation then gives 
 

212.5 0.5 2.985

4.362 m
s

E E

J kg v J

v

′=

= ⋅ +

=

 

 

 

Acceleration of the Pendulum 

 

Just a small note to tell you that the formula 
 

( )2 sina A tω ω φ= − +  

 

will provide, for the pendulum, the tangential acceleration (at). Do not forget that the 

pendulum is also performing a circular motion and that there is also a centripetal 

acceleration. 
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2

c

v
a

L
=  

  
The total acceleration of the pendulum is, therefore, 
 

2 2

c ta a a= +  

 

In the following clip, you can see the velocity and acceleration 

vectors of a pendulum, as well as the values of the energies. 

 

 

http://www.youtube.com/watch?feature=fvwp&NR=1&v=jyHFXTZmWgI 

 

 

Compound Pendulum 
 

A compound pendulum is an object oscillating around an axis. 

The calculation of the angular frequency for this case has 

already been done. 

 

Angular Frequency of a Compound Pendulum 

 

mgd

I
ω =  

 

It only remains to find d (the distance between the axis and the centre of mass) and I (the 

moment of inertia) according to the situation. 

 

Example 1.4.3 
 

A 1 m long rod oscillates. The axis of rotation is at one end of the 

rod, as shown in the diagram. What is the period of oscillation of 

the rod? 

 

To find the period, which is 2π/ω, ω is needed. For a 

compound pendulum, ω is  
 

mgd

I
ω =  

 

To calculate ω, d and I  are needed. 

 

Let’s begin with d. As the centre of mass of the rod is in the middle of the rod and the 

axis is at the end of it, the distance between the centre of mass and the axis is 
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0.5
2

L
d m= =  

 

The moment of inertia I is 
 

2

. .c m
I I md= +  

 

As ��.�. of a rod is 
 

2

. .

1

12
c m

I mL=  

 

The moment of inertia is 
 

2

2 21 1

12 2 3

L
I mL m mL

 = + = 
 

 

 

The angular frequency is therefore 
 

( )

21
3

2

2

3

3 9.8 0.5

1

3.834

N
kg

rad
s

mgd

I

mgd

mL

gd

L

m

m

ω =

=

=

⋅ ⋅
=

=

 

 

and the period is 
 

1

2

2

3.834

1.639

T

s

s

π
ω

π
−

=

=

=

 

 

The moment of inertia of objects can also be determined with the period if it is very difficult 

to calculate directly. Just make the object oscillate and calculate the value of I from the 

value of the period and d. 
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So far, we have talked about free oscillating systems. This means that once the swinging 

has begun, there is no external force acting on the system. Therefore, mechanical energy is 

conserved, and the oscillation is perpetual. 

 

Of course, frictional forces are always present. This is an external force that makes the 

mechanical energy of the system decrease. We would then deal with damped oscillations. 

With not too much friction, the amplitudes of the oscillations would just decrease with time 

(this corresponds to subcritical damping). We are not going to explore in detail what 

happens in this case. 

 

An external force could also be acting on the system. The case of periodic forces exerted 

on the system is particularly interesting. Those are forces acting on the system cyclically. 

For example, a person who pushes a child on a swing is exerting a periodic force. Whenever 

the child returns, the person exerts a force on the child. Each boost then increases the 

amplitude of the motion. 

 

Let’s consider what happens if a periodic force is exerted on a mass-spring system that 

oscillates horizontally on a frictionless surface with a natural oscillation period of 1 second. 

Suppose initially that the force is exerted with a period that is not the same as that of the 

mass-spring system. For example, this can be a 5 N force acting towards the right during 

0.1 second every 0.5 seconds. Initially, the force pushes the mass and puts it into motion. 

A half second later, the mass has done half of the oscillation and has returned to the point 

of departure, but is now moving towards the left. At this moment, the force towards the 

right acts again on the mass that is moving towards the left. This force will, therefore, stop 

the mass. Half a second later, the force to the right will put the mass in motion once again, 

but it will be stopped again half a second later. This is always what happens if the period 

of the force is different than the period of the oscillating system: sometimes, the force gives 

energy to the mass when the force is in the same direction as the velocity, and sometimes 

it removes energy from the mass when it acts in the opposite direction to the velocity. The 

overall effect is, therefore, not large. 

 

On the other hand, the effect is quite different if the period of the force is the same as the 

period of the oscillating system. If the force acts every second on our mass-spring system 

then, the amplitude will increase continuously. Initially, the force puts the mass in motion 

towards the right. When the force acts again a second later, the object has returned to the 

starting position and moving towards the right. A force acting towards the right on a mass 

travelling towards the right increases the speed of the mass, thereby increasing the 

amplitude. This increase in speed and amplitude will happen again every second, which 

means that the oscillation amplitude will go on increasing. The oscillation amplitude can 

become colossal when the force acts with a period equal to the period of oscillation of the 

system. If there’s no friction, the amplitude will increase until the system is destroyed. 

With friction, the amplitude will increase until the energy provided by the force is equal to 

the energy dissipated by friction. 
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When a force acts on an oscillating system with a period equal to the natural period 

of oscillation of the system, the oscillation amplitude can become very large. This 

phenomenon is called resonance. 

 

The oscillation amplitude of the system when there is a periodic force acting on the system 

can even be found. For example, you can have a look, in this document, at the calculation 

of the amplitude of a mass-spring system subjected to a force 	�cos ωt if there is a friction 

force proportional to the speed opposed (F = -bv) to the motion 

https://physique.merici.ca/waves/proofamplitude.pdf 

This calculation shows that the amplitude after a certain period of time is 
 

( ) ( )
0

2 22

F
A

m k bω ω
=

− + +
 

 

Here is the graph of this amplitude as a function of the frequency of the force. 
 

 
 

The dotted line is the natural frequency of oscillation of the system. It shows that when the 

force has a frequency equal to the natural frequency of oscillation of the system, the 

amplitude becomes enormous. There are actually three cases on this graph: little friction in 

red, more friction in blue and even more friction in green. Note that the amplitude of 

oscillation becomes very large for systems with little friction. The amplitude can become 

so great that the system can be destroyed. (In fact, resonance happens at a frequency a bit 

smaller than the natural frequency of oscillation, especially when friction is important. On 

the graph, it can be seen that the amplitude reaches a maximum value when the frequency 

is a bit smaller than the natural frequency for the curve with the largest friction.) 

 

In this demonstration, a motor makes a mass-spring system oscillate. It can be seen that the 

amplitude is much larger when the motor exerts a force with a frequency identical to the 

natural frequency of the mass-spring system. 

http://www.youtube.com/watch?v=aZNnwQ8HJHU 

 

Sound waves arriving on an object make this object vibrate with the same frequency as the 

sound. If a sound arrives on a glass object with a frequency similar to the oscillation 

frequency of the glass, the amplitude may increase up until the glass breaks. (Yes, the edge 
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of a glass can oscillate. You can see this oscillation very well in the video. It seems to go 

slowly, but this is because a strobe was used.) 

http://www.youtube.com/watch?v=17tqXgvCN0E 

You can even try it at home. 

http://www.youtube.com/watch?v=fbfjcEzFN2U 

Remember that the intensity of the sound is not the only thing that matters, the frequency 

must be exactly right. It is, therefore, impossible for someone to break all the things made 

of glass around him by singing very loudly. This would require that all the glass objects 

have an oscillation frequency equal to the frequency of the sound, which is very unlikely. 

 

In the following video, a helicopter is destroyed by resonance. 

http://www.youtube.com/watch?v=ztBGCesBudE 

Since the blades of the rear rotor are not balanced, the rotation of the propeller exerts a 

periodic force on the back of the helicopter. By rotating the propeller at the resonance 

frequency of the chopper, the oscillation amplitude steadily increases until the rear of the 

helicopter is destroyed. This would not have occurred if the propeller had spun with a 

greater or smaller period. 

 

You can admire these young people trying to make a bridge collapse by applying a periodic 

force equal to one of the natural frequencies of the bridge (because there are several ways 

to swing a bridge). 

http://www.youtube.com/watch?v=MNBun1JgDYo 

http://www.youtube.com/watch?v=xlOS_31Ubdo 

 

When the Millennium Bridge was opened in London, it was soon realized that there was a 

resonance problem. When the bridge started to oscillate, pedestrians, who tried to keep 

their balance, exerted a force on the bridge with the same frequency as the oscillation 

frequency of the bridge, and this amplified the oscillations. 

http://www.youtube.com/watch?v=eAXVa__XWZ8 

http://www.youtube.com/watch?v=gQK21572oSU (more detailed version) 

The problem was solved by adding shock absorbers, thereby increasing the friction. 

 

The same phenomenon was responsible for the collapse of the Basse-Chaine suspension 

bridge in Angers, France. On April 16, 1850, a violent storm was raging while the 11th 

regiment of light infantry was crossing the bridge. The wind of the storm then generated 

oscillations in the bridge. Just as 

on the Millennium Bridge, 

swinging motions were amplified 

by the soldiers trying to keep their 

balance on the bridge. The swings 

became so large that the cables 

holding the bridge gave way and 

226 people were killed (some 

were killed by the bayonets of 

their fellow soldiers). 

 
fr.wikipedia.org/wiki/Pont_de_la_Basse-Cha%C3%AEne#/media/File:Pont1839.jpg 
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Sometimes, it is said that the collapse of the bridge was caused by the soldiers walking in 

step with the same frequency as the resonant frequency of the bridge. However, the soldiers 

were not walking in step at this time. On the other hand, this is what caused the collapse of 

the Broughton Bridge which crosses the Irwel River in Manchester. On April 12, 1831, the 

soldiers felt the bridge swinging under their feet (even if they were not walking the steps 

at this time). Finding the feeling amusing, some began to whistle a marching tune to make 

everyone march at the same pace as the swinging of the bridge. Under the synchronized 

march, the amplitude of the oscillation increased until a part of the bridge table fell 6 m. 

As the river was very deep in this place, there were only injured people this time. 

 

The collapse of the Tacoma Narrows Bridge (State of Washington), although spectacular, 

http://www.youtube.com/watch?v=3mclp9QmCGs 

is not due to the resonance but to aeroelastic instabilities. In this case, the amplitude simply 

increases as the speed of the wind increases, there is no resonant frequency. 

 

 

 

 

Link between T and f 

1
T

f
=  

 

Definition of Angular Frequency 
 

2
2 f

T

π
ω π= =  

 

Phase Constant 
 

2
t

T
φ π

∆
=  

 

Position as a Function of Time for a Harmonic Oscillation 
 

( )sinx A tω φ= +  

 

Velocity as a Function of Time for a Harmonic Oscillation 
 

( )cosv A tω ω φ= +  

 

Maximum Speed 
 

maxv Aω=  
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Acceleration as a Function of Time for a Harmonic Oscillation 
 

( )2 sina A tω ω φ= − +  

 

Maximum Acceleration 
 

2

maxa Aω=  

 

Link between x and v at Some Instant 
 

2

2 2 v
A x

ω
 = +  
 

 

 

Link between x and a at Some Instant 
 

2
a xω= −  

 

Condition for a Harmonic Oscillation 

 

( )constanta x= −  

or 

The potential energy must be proportional to x²  

 

φ calculation 
 

( )tan
x

t
v

ω
ω φ+ =  

 

Angular Frequency for a Mass-Spring System 
 

k

m
ω =  

 

Stretching of the Spring at the Equilibrium Position 
 

0kx mg=  

 

Mechanical Energy 
 

mec k
E E U= +  

 

Kinetic Energy 
 

21

2
k

E mv=  
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Potential Energy (always good) 
 

2 21

2
U m xω=  

 

Potential Energy (good only for the mass-spring system) 
 

21

2
S

U kx=  

 

Mechanical Energy 
 

2 21

2
mec

E m Aω=
 

2

max

1

2
mec

E mv=  

 

Mechanical Energy (good only for the mass-spring system) 
 

21

2
mec

E kA=  

 

Angular Frequency of a Simple Pendulum (Amplitude < 15°) 
 

g

L
ω =  

 
Position of a Pendulum 
 

( )

( )max

sin

or

sin

x A t

t

ω φ

θ θ ω φ

= +

= +

 

 

Link between x and θ  for a Pendulum 
 

( )rad

x

L
θ =  

 

Link between A and θmax  for a Pendulum 
 

max ( )rad

A

L
θ =  

 
Potential Energy (good only for a pendulum) 
 

21

2
g

g
U m x

L
=     or    21

2
g

U mgLθ=    (The angle is in radians) 
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Angular Frequency of a Compound Pendulum 
 

mgd

I
ω =  

 

 

 

 

1.1 Harmonic Oscillations 
 

1. The position as a function of time of an object in harmonic motion is given by the 

following formula. 
 

( )4
0.2 sin 5 rad

s
x m t π= ⋅ ⋅ +  

 

a) What is the amplitude? 

b) What is the oscillation period? 

c) What is the phase constant? 

d) What is the maximal speed? 

e) Write this equation in the form ( )cosx A tω ψ= +  

 

 

2. A harmonic oscillation motion is described by this graph. 
 

 
 

a) What is the amplitude of this motion (approximately)? 

b) What is the period of this motion (approximately)? 

c) What is the phase constant of this motion (approximately)? 

 

 

3. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )3
4

0.25 sin 10 rad
s

x m t π= ⋅ ⋅ +  
 

a) What is the position at t = 1 s? 

b) What is the velocity at t = 1 s? 

c) What is the acceleration at t = 1 s? 
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4. The frequency of an object performing a harmonic oscillation is 5 Hz and the 

maximum acceleration of the object is 12 m/s². What is the maximum speed of the 

object? 

 

 

5. The maximum speed of an object performing a harmonic oscillation is 32 m/s while 

the maximum acceleration of this object is 128 m/s². 

 

a) What is the period of the motion? 

b) What is the amplitude of motion? 

 

 

6. At t = 0 s, an object in harmonic oscillation is at the position x = 10 cm and has a 

velocity of 24 cm/s. The period of the motion is 8 seconds. What is the equation of 

the motion ( )( )sinx A tω φ= + ? 

 

 

7. At t = 0 s, an object in harmonic oscillation is at the position x = -20 cm and has a 

velocity of 0 m/s. The period of the motion is 8 seconds. What is the equation of 

motion ( )( )sinx A tω φ= + ? 

 

 

8. At some instant during its oscillation motion, an object is at x = 6 cm, has a velocity 

of 1 m/s and an acceleration of -24 m/s². 

 

a) What is the period of the motion? 

b) What is the amplitude of motion? 

 

 

9. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )3
4

0.25 sin 10 rad
s

x m t π= ⋅ ⋅ +  

 

a) What is the velocity when the object is at x = 15 cm? 

b) What is the acceleration when the object is at x = 15 cm? 

 

 

10. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )4
0.2 sin 5 rad

s
x m t π= ⋅ ⋅ +  

 

a) When is the mass at the position x = 12 cm for the first time? 

b) At what time is the velocity of the object equal to v = -60 cm/s for the first 

time? 
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11. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )2
0.16 sin 10 rad

s
x m t π= ⋅ ⋅ +  

 

At what time is the mass at position x = 8 cm while having a positive velocity for 

the first time? 

 

 

12. An object describes a harmonic oscillation with a period of 0.5 s. At t = 0 s, the 

magnitude of the acceleration of the object is maximum. At this instant, the 

acceleration reaches -32 m/s². What is the equation of motion ( )( )sinx A tω φ= + ? 

 

 

13. In a harmonic motion having an amplitude of 20 cm and a period of 6 seconds, how 

much time does it take for the object to go from x = -10 cm to x = 10 cm? 

 

 

1.2 Mass-Spring Systems 

 

14. A 250 g mass is fixed at the end of a spring as shown in the diagram. The spring 

has a constant of k = 81 N/m. At t = 1 s, the mass is at x = 10 cm and has a velocity 

of - 2 m/s. 

 

a) What is the amplitude of the motion? 

b) What is the phase constant? 

c) What is the equation of motion

( )( )sinx A tω φ= + ? 

 

 

15. A mass-spring system has a frequency of 10 Hz. When the mass is changed for 

another mass which is 100 g greater, the frequency of oscillation decreases to 6 Hz. 

 

a) What was the initial value of the mass? 

b) What is the value of the spring constant? 

 

 

16. When a 200 g mass is attached to a vertical spring, the spring extends 10 cm to 

reach the equilibrium position. What will the period of oscillation of this mass-

spring system be? 
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17. A mass takes 0.8 seconds to travel the 12 cm from one side to the other of its 

oscillation motion. 

 

a) What is the amplitude of the motion? 

b) What is the period of the motion? 

c) What is the maximum speed of the mass? 

d) What is the maximum acceleration of the 

mass? 

 

 

 

18. An object is attached to the end of a spring with a constant of 250 N/m. The object 

is then set in motion, and the resulting motion has an amplitude of 20 cm while the 

maximum speed of the object is 4 m/s. What is the mass of the object? 

 

 

19. The force exerted by a spring on a mass of 200 g is given by this graph.  

 

 
 

What is the period of the harmonic motion of this mass? 

 

 

20. A mass-spring system oscillates with an amplitude of 12 cm and a 2 s period. At 

t = 0, the position of the mass is x = -8 cm, and the velocity is positive. What is the 

phase constant φ? 

 

 

 

21. When water is added to the bucket shown in the diagram, the new 

equilibrium position is 12 cm lower. The empty bucket has a mass 

of 2 kg. Once the water is added, the system oscillates with a 

period of 2.4 s. What is the mass of the water added in the bucket? 
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22. A mass of 2 kg is suspended at the end of a 

spring. Initially, the spring is not stretched, 

and the mass is at rest. When we let the mass 

fall (without pushing it), it takes 0.6 seconds 

to reach its lowest point. 

 

a) What is the spring constant? 

b) What is the amplitude of this motion? 

c) What is the maximum speed of the 

mass? 

d) When will the mass have a speed of 

1 m/s directed upward for the first 

time? 

 

 

 

1.3 Mechanical Energy in Harmonic Motion 

 

23. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )4
0.2 sin 5 rad

s
x m t π= ⋅ ⋅ +  

 

The spring constant is 250 N/m. 

 

a) What is the mechanical energy of this system? 

b) What is the spring energy at t = 5 s? 

c) What is the kinetic energy at t = 5 s? 

 

 

24. At some instant, the kinetic energy of an oscillating mass-spring system is 10 J and 

the spring energy is 20 J. The period of the motion is 3 s and the amplitude is 80 cm. 

 

a) What is the spring constant? 

b) What is the mass? 

c) What is the maximum speed of the mass? 

 

 

 

25. The mechanical energy of a system performing a harmonic oscillation is of 5 J. The 

amplitude is 10 cm, and the period is 0.5 s. 

 

a) What is the kinetic energy when x = 6 cm? 

b) What is the spring energy when x = 4 cm? 
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26. The position as a function of time of an object performing a harmonic oscillation is 

given by the following formula. 
 

( )0.25 sin 10 rad
s

x m t π= ⋅ ⋅ +  

 

When does Ek = U for the first time if the mechanical energy is 50 J? 

 

 

27. A mass-spring system oscillates with an amplitude of 12 cm. 

 

a) What is the position of the object if the speed is equal to one-quarter of the 

maximum speed? 

b) What is the position of the object if the kinetic energy is equal to half the 

spring energy? 

 

 

28. The 2 kg mass in the diagram is suspended from the ceiling 

with a spring having a 200 N/m constant. Initially, the spring 

is neither stretched nor compressed. The mass is then released 

without pushing it. A harmonic motion is then obtained. 

 

a) What will the period of the motion T be? 

b) What will the amplitude of this motion be? 

 

 

1.4 Pendulum 

 

29. What is the length of the rope of a simple pendulum if the pendulum becomes 

vertical every 2 seconds? 

 

 

30. A pendulum has a period of 2 seconds on the surface of the Earth. What will the 

period of the pendulum be if it is brought to the surface of the Moon, where g is 

1.6 N/kg? 

 

 

31. The length of the rope of a simple pendulum is 2 m. The pendulum is placed in a 

position where the angle between the rope and the vertical is 10° and is then 

released (without pushing the pendulum). 

 

a) What is the period of the motion? 

b) What is the maximum speed of the pendulum? 

 

 

32. A simple pendulum oscillates with an angular amplitude of 12° and a period of 

1.6 seconds. What is the speed of the mass when the angle is 8°? 
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33. A simple pendulum consists of a 500 g mass and 

a 1.2 m long rope. Initially (t = 0 s), we have the 

following situation. 

 

What is the equation of motion of the pendulum

( )( )max sin tθ θ ω φ= + ? (We want θ in degrees.) 

 

 

 

34. The angular amplitude of a simple pendulum is 15°, and its maximum speed is 

60 cm/s. 

 

a) What is the length of the rope? 

b) What is the period of the motion? 

 

 

35. A disk is fixed to an axis of rotation as shown in the diagram. Knowing that the 

mass of the disk is 5 kg, that its radius is 20 cm, and that the moment of inertia of 

a disk rotating around an axis located at the edge of the disk is 

 

23

2
I mR=  

 

determine the period of the motion if the disk is oscillating. 

 

 

36.  What is the period of oscillation of this 2 kg rod? 

 

Reminders: 

 

1) The moment of inertia of a rod is 
 

21

12
cm

I mL=  

 

2) The moment of inertia when the rotation axis is 

not at the centre of mass is 
 

2

cm
I I mh= +  

 

     where h is the distance between the centre of mass and the axis of rotation. 
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37. This 900 g baseball bat oscillates with a 

period of 1.335 seconds when the axis of 

rotation is at the position shown in the 

diagram. What is its moment of inertia 

when the axis is at this location? 

 

 

 

Challenges 

(Questions more difficult than the exam questions.) 

 

38. What must be the value of d to have the smallest 

possible period of oscillation for this rod? 

 

Reminders: 

 

1) The moment of inertia of a rod is 
 

21

12
cm

I mL=  

 

2) The moment of inertia when the rotation axis is 

not at the centre of mass is 
 

2

cm
I I mh= +  

 

     where h is the distance between the centre of mass and the axis of rotation. 

 

 

 

39. A large cubic iceberg (L = 75 m) floats on 

the ocean. What is the period of oscillation 

of the iceberg if it slightly wobbles in a 

vertical direction at the surface of the 

ocean? (The density of water is 

1000 kg/m³ and the density of ice is 

920 kg/m³). 

 

 

 

 

40. Suppose the force on an object is given by F = -cx³ (instead of F = -kx). Show that 

with such a force, the period is proportional to 1/A (where A is the amplitude). 
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1.1 Harmonic Oscillations 
 

1. a) 20 cm     b) 1.257 s     c) π/4     d) 1 m/s     e) ( )4
0.2 cos 5 rad

s
x m t π= ⋅ ⋅ −  

2. a) 5 cm     b) 2.5 s     c) 1 rad 

3. a) -5.216 cm     b) 2.445 m/s     c) 5.216 m/s² 

4. 0.382 m/s 

5. a) 1.571 s     b) 8 m 

6. ( )4
0.3215 sin 0.3163rad

s
x m tπ= ⋅ ⋅ +  

7. ( )4 2
0.2 sin rad

s
x m tπ π= ⋅ ⋅ −  or ( )3

4 2
0.2 sin rad

s
x m tπ π= ⋅ ⋅ +  

8. a) 0.3142 s     b) 7.81 cm 

9. a) ± 2 m/s     b) -15 m/s² 

10.  a) 0.3425 s     b) 0.2858 s 

11.  0.5236 s 

12. ( )2
0.2026 sin 4 rad

s
x m t ππ= ⋅ ⋅ +  

13.  1 s 

 

1.2 Mass-Spring Systems 

 

14.  a) 14.95 cm     b) -15.591 rad     c) ( )0.1495 sin 18 15.591rad
s

x m t rad= ⋅ ⋅ −  

15.  a) 56.25 g     b) 222.1 N/m 

16.  0.6347 s 

17.  a) 6 cm     b) 1.6 s     c) 0.2356 m/s     d) 0.9253 m/s² 

18.  625 g 

19.  0.6283 s 

20.  -0.7297 rad 

21.  183.2 g 

22. a) 54.83 N/m     b) 35.75 cm     c) 1.872 m/s     d) 0.7077 s 

 

1.3 Mechanical Energy in Harmonic Motion 
 

23.  a) 5 J     b) 1.844 J     c) 3.156 J 

24.  a) 93.75 N/m     b) 21.37 kg     c) 1.676 m/s 

25.  a) 3.2 J     b) 0.8 J 

26.  0.0785 s 

27.  a) ±11.62 cm     b) ±9.80 cm 

28.  a) 0.6283 s     b) 9.8 cm 

29. a) 0.7854 s     b) 6 m/s     c) 75 cm 
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1.4 Pendulum 

 

30.  3.972 m 

31.  4.95 s 

32.  a) 2.838 s     b) 0.7727 m/s 

33.  0.3896 m/s 

34.  ( )6.868 sin 2.858 2.079rad
s

t radθ = °⋅ ⋅ +  

35.  a) 0.536 m     b) 1.47 s 

36.  1.099 s 

37.  2.194 s 

38.  0.171 kgm²  

 

Challenges 

 

39.  L/√12 

40.  16.67 s 

 


