
E1  
 

 

 

To go to Mars, there is no need to use reactors during the whole 

journey (it would be very expensive to do so). The spacecraft 

simply need to be placed on a Hohmann transfer orbit with its 

perihelion at the Earth and its aphelion at Mars. How long will 

last this journey from the Earth to Mars? 

 
 

 
spaceart1.ning.com/photo/destination-complete?context=user 

 

Discover the answer to this question in this chapter.  
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The formula of the gravitational force was seen previously, in Chapter 4. It was a force of 
attraction between the masses whose magnitude is 
 

1 2
2

m m
F G

r
=  

 
where G = 6.674 x 10-11 Nm²/kg². Note that r is the distance between the centres of the 
celestial objects. 
 
From this law, it was found that an object can move in a circular orbit around a star or a 
planet. Actually, the circular orbit is only one possibility among many possible trajectories 
near a planet or a star. 
 
  

 

 
Shape of trajectory 
 
Let’s consider an object following a trajectory near a celestial object. 
 

 
 
On its trajectory, the object will, at some point, pass at its closest position to the central 
mass (the star or the planet). The distance between the object and the central mass at this 
instant will be called rp, and the speed at this point will be called vp. Also, note that the 
velocity at this location is perpendicular to the distance. This position will be the reference 
point for the angle θ used to denote the position.  
 
From the force, the shape of the path is sought. This means that r as a function of θ is 
sought. Details of the calculation of the shape of the path are beyond the scope of these 
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notes, and the result is simply given here (however, the details of this calculation can be 
found in chapter 1 of the Astrophysics notes, in French). The shape of the path is given by 
 
Distance as a Function of θ of an Object Near a Central Mass 

  
1

1 cosp

e
r r

e θ

+
=

+
 

 
 
where e is a factor called eccentricity whose value is 
 
Eccentricity  

 
2

1p p

c

v r
e

GM
= −  

 
 
The exact shape of the path depends on the value of e. The different possibilities will be 
considered in the following sections. 
 
 
Mechanical Energy 
 
The mechanical energy of the object following the trajectory can be calculated. This energy 
is 
 

21

2
c

mec p

p

GM m
E mv

r

−
= +  

 
According to the eccentricity formula, the velocity is 
 

( )

2

2

1

1

p p

c

c

p

p

v r
e

GM

GM e
v

r

= −

+
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Thus, the energy becomes 
 

( )

21

2

11

2

c
mec p

p

c c

p p

GM m
E mv

r

GM e GM m
m

r r

−
= +
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1
1

2
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The end result is 
 
Mechanical Energy  

 
( )1

2
c

mec

p

GM m e
E

r

−
= −  

 
 
Angular Momentum 
 
Remember that there is conservation of angular momentum if the sum of the external 
torque vanishes. There is only one force, gravity, acting on the object during its orbital 
motion. The torque, calculated from the central mass, is  
     

sinFrτ φ=  
 

where φ is the angle between the force and a line going 
from the central mass to the object in orbit (line r in the 
diagram). This torque vanishes because the force is 
pointing directly towards the central body, so in the same direction as the line r. The angle 
φ is, therefore, zero, and the sum of torques is zero. 
 
This means that the angular momentum, calculated from the central body, is constant. 
 

sin constant

constant
sin

L mrv

rv
m

ψ

ψ

= =

=
 

 
Since the mass is constant, the term to the right is a 
constant.  
 

sin constantrv ψ =  
 
The constant can easily be found by calculating its value at the point of closest approach 
to the central mass. At this point, the value is 
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sin sin90
p p

rv r vψ = °  

 
This gives us a first angular momentum conservation equation. 
 
Angular Momentum Conservation 

 
sin

p p
rv r vψ =  

 
 
From the formula of the eccentricity, 
 

2

1p p

c

v r
e

GM
= −  

 
the speed can be obtained 
 

( )2 1c

p

p

GM e
v

r

+
=  

 
Using this value in the conservation equation, it becomes 
 

( )

( )

1
sin

1

c

p

p

c p

GM e
rv r

r

GM r e

ψ
+

=

= +

 

 
Angular Momentum Conservation 

 

( )sin 1c prv GM r eψ = +  

 
These equations of conservation of angular momentum are two equivalent formulations of 
what is known as Kepler’s second law. 
 
 
Swept Areas 
 
Kepler gave a very different formulation of this law when he discovered it in 1608. Kepler’s 
formulation was 
 

A line segment joining a planet and the Sun sweeps out equal areas during 

equal intervals of time 
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What does “swept area” mean? If the object moves from 
position 1 to position 2, the swept area is the area of the region 
bounded by the path, a line that goes from the central mass to 
position 1 and another line that goes from the central mass to 
position 2 (see diagram). 
 
Kepler’s second law means that this area is always the same if 
the time between positions 1 and 2 is the same. 
 
Let’s take an example to illustrate. One of the possible shapes 
for the orbit is an ellipse, such as shown in the following 
diagram. 
 
 

 
serge.bertorello.free.fr/astrophy/kepnew/kepnew.html 

 
Kepler’s second law then specifies that the area of the two regions shown in the diagram 
is the same, provided that the time it takes for the object to travel from position 1 to position 
2 is the same as the time taken to travel from position 3 to position 4. 
 
To prove this law, and show the link with the angular momentum conservation, the swept 
area will be calculated between two positions very close to each other. In fact, we’ll take 
two points on the trajectory that are at a distance ds from each other. 
 
Then, the swept area is a triangle whose height is dh. 
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As ψ is the angle between the velocity (the trajectory) and the distance r, the height of this 
triangle is 
 

( )

( )

cos 90

sin

dh ds

ds

ψ

ψ

= ⋅ − °

= ⋅
 

 
 
Thus, the area of the triangle is 
 

2

2
sin

2

base height
dA

rdh

rds ψ

⋅
=

=

=

 

 
Therefore, 
 

sin

2
sin

2

dA rds

dt dt

rv

ψ

ψ

=

=

 

 
since ds/dt = v. 
 
However, according to the conservation of angular momentum, the following relation holds 
 

( )sin 1
c p

rv GM r eψ = +  
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This allows writing 
 

( )1

2
c p

GM r edA

dt

+
=  

 
The term on the right is a constant. When the rate of change is constant, dA/dt can be 
replaced by ∆A/∆t to finally obtain 
 
Kepler’s Second Law  
 

( )1

2
c p

GM r e
A t

+
∆ = ∆  

 
This result clearly shows that the swept area is always the same if the time is the same. 
 
 
 

(e = 0) 

 
If the eccentricity is zero, then the formula of the path becomes 
 

pr r=  

 
This indicates that r does not vary with the angle and that r is 
a constant. With a constant radius, the trajectory is a circular 
orbit. 

www.ux1.eiu.edu/~addavis/3050/Ch09Gravity/Sat.html 
 
To have a vanishing eccentricity, the speed must be 
 

2

2

1

0 1

p p

c

p p

c

c
p

p

v r
e

GM

v r

GM

GM
v

r

= −

= −

=

 

 
This formula is actually the same equation for the speed on a circular orbit obtained in 
chapter 6. There was no index p then, but this makes no difference because the closest 
distance to the central mass is always the same with a circular orbit, and is equal to the 
radius of the orbit. Thus, the formula can be written as 
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Speed of an Object on a Circular Orbit 

 

c
GM

v
r

=  

 
With a vanishing eccentricity, the mechanical energy of the object in orbit is 
 

( )1

2

2

c

mec

p

c

p

GM m e
E

r

GM m

r

−
= −

= −

 

 
Since r = rp on a circular orbit, the energy is 
 
Mechanical Energy of an Object on a Circular Orbit 

 

2
c

mec

GM m
E

r
= −  

 
(Which is identical to the formula obtained in chapter 9.) 
 
Finally, the period of revolution is found by dividing the circumference of the orbit by the 
speed of the object in orbit. This calculation had been made in Chapter 6, and the following 
result was obtained. 
 
Period of an Object on a Circular Orbit (Kepler’s 3rd Law) 

 
3

2
c

r
T

GM
π=  
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 (0 < e < 1) 

 
When the eccentricity is between 0 and 1, 
the value of r changes with the angle 
according to the following equation. 
  
 

1

1 cosp

e
r r

e θ

+
=

+
 

 
This equation is the equation of an ellipse. 

 
 

 
 

hyperphysics.phy-astr.gsu.edu/hbase/math/ellipse.html 

 
To obtain such an ellipse, the speed vp must be between two values. The minimum value 
is found with the minimum eccentricity. 
 

2

0

1 0p p

c

c
p

p

e

v r

GM

GM
v

r

>

− >

>

 

 
 
The maximum value is found with the maximum eccentricity. 
 

2

1

1 1

2

p p

c

c
p

p

e

v r

GM

GM
v

r

<

− <

<

 

 
 
Kepler’s First Law 
 
The elliptical shape of orbits was discovered in 1608 by Johannes Kepler. In 1600, he 
started a very thorough study of the orbit of Mars using the observation data of Tycho 
Brahe, the best observation data made before 1600. 
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After 8 years of studies, Kepler arrived at a groundbreaking conclusion. While it was 
believed for nearly 20 centuries that the orbits of planets had to be perfect circles, on the 
pretext that the heavens must be perfect in order to reflect the perfection of the gods (or 
God), Kepler showed that the orbits are elliptical. It was a revolution in astronomy but it 
took almost a century before a majority of scientists were convinced of the truth of this 
law. 
 
Kepler’s First Law 

 

The orbits are ellipses. The central mass occupies one of the foci. 
 
 
 
Ellipse (or Ellipsis) 
 
An ellipse looks like an oval, but it is a 
peculiar oval. To draw an ellipse, just use a 
loop of rope with two pushpins pressed into a 
board. Then take a pencil and then plot the 
diagram bounded by the rope as shown in the 
illustration. 
 
 
 

members.shaw.ca/len92/astronomy.htm 

 
The two foci F1 and F2 corresponds to the two locations where the pushpins were placed. 
 
This means that an ellipse is the set of all points on a plane whose distances from the two 
foci add up to a constant. The ellipse is more or less elongated depending on the distance 
between the pushpins and the length of the rope. 
 
The points F and F’ are the foci. Here, the central mass is located at the focus F. The line 
going from one side of the ellipse to the other passing through the foci is the major axis of 
the ellipse. The two points where the ellipse 
and the major axis intersect (points A and P) 
are the apsides (singular: apsis). (The major 
axis is also called the line of apsides.) Point 
A is the point on the orbit which is farthest 
from the central mass. The general name for 
this point is apoapsis (the terms apocenter, 
apofocus, and upper apse are also used). 
Point P is the point on the orbit nearest to 
the central mass. The general name for this 
point is periapsis (the terms pericenter, 
perifocus and lower apse are also used). 

www.ck12.org/book/CK-12-PreCalculus-Concepts/r514/section/9.4/ 
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Actually, a large terminology is used to describe these apsides depending on the nature of 
the central mass. If the orbit is around the Sun, the nearest point is the perihelion and the 
farthest point is the aphelion. If the orbit is around the Earth, the nearest point is the perigee 
and the farthest point is the apogee. The following table shows you (as a curiosity) the 
names of these points according to the nature of the central mass. (But you should 
remember the underlined ones.) 
 

Central Mass Periapsis Apoapsis 

Galaxy Perigalacticon Apogalacticon 
Black Hole Perimelasma Apomelasma 

Star Periastron Apoastron 
Sun Perihelion Aphelion 

Mercury Perihermion Aphermion 
Venus Pericytherion Apocytherion 
Earth Perigee Apogee 

Moon Periselene Aposelene 
Mars Periarerion Apoareion 

Jupiter Perizene Apozene 
Saturn Perikrone Apokrone 
Uranus Periuranion Apouranion 
Neptune Periposeidon Apoposeidon 

Pluto Perihadion Apohadion 
 
 
Eccentricity 
 
The eccentricity of an ellipse is defined by the 
ratio 
 

e
FF

AP

c

a
= =

'
 

 
 
where c is the distance from the centre of the ellipse to one of the foci and a is the distance 
from the centre of the ellipse to one of the apsides (a is called the semi-major axis). 
 
If both foci are at the centre, then the eccentricity is zero and the ellipse is a circle. The 
higher the eccentricity, the farther apart the foci are, and the more elongated the ellipse is. 
 

 
www.astro-tom.com/technical_data/elliptical_orbits.htm 
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The value of the eccentricity of an ellipse is always less than 1 since the foci would not be 
inside the ellipse if the eccentricity were to be higher than 1. 
 
As can be seen in the following table, the eccentricity of the planetary orbits is generally 
quite low. 
 

Planet Eccentricity of the Orbit 

Mercury 0.206 
Venus 0.007 
Earth 0.017 
Mars 0.093 

Jupiter 0.048 
Saturn 0.056 
Uranus 0.047 
Neptune 0.009 

 
 
With the exception of Mercury, planetary orbits deviate only a little from a circular shape. 
The eccentricity of the orbit of Mars is relatively high, and this allowed Kepler, who studied 
its orbit, to realize that the orbits are elliptical. However, these values of eccentricity are 
nothing compared to the eccentricity of the orbit of some objects that have very elongated 
orbits such as comets. For example, the orbit of the most famous comet, Halley’s Comet, 
has an eccentricity of 0.970. 
 
 
Distances between the Object in Orbit and the Central Mass 
 
Distances at the Apoapsis and at the Periapsis 

 
The relationships between the distances at the apoapsis and at the periapsis, on the one 
hand, and the eccentricity and the semi-major axis of the ellipse, on the other hand, can be 
found. The distances at the apoapsis and periapsis as functions of the semi-major axis a 
and the eccentricity e are 
 

( )1

a
r a c

a ea

a e

= +

= +

= +  
 
 

( )1

pr a c

a ea

a e

= −

= −

= −
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ra and rp as functions of a and e 

 
( )

( )

1

1

a

p

r a e

r a e

= +
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These previous relationships can be inverted to get relations between the semi-major axis 
and the eccentricity as a function of the distances at the apoapsis and at the periapsis. 
 
a and e as functions of ra and rp 

 

2
p a a p

a p

r r r r
a e

r r

+ −
= =

+
 

 
 
 

Distance at any Point on the Orbit 

 
The formula giving the position of the object on the orbit as a function of the angle is 
already known. 
 

1

1 cosp

e
r r

e θ

+
=

+
 

 
Since rp = a (1 – e), the distance can also be written as 
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1 cos
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Thus, two formulas can be used to find r as a function of θ. 

 
Relationship Between r and θ for an Elliptical Orbit 
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Orbital Speed 
 
The Speed Must Change 

 
It is obvious that the speed of an object cannot be constant on an elliptical orbit because 
the mechanical energy must be conserved. Indeed, for an object of mass m orbiting around 
another object of mass Mc , the mechanical energy is 
 

21
constant

2
c

mec

GM m
E mv

r
= − =  

 
Thus, when the object in orbit approaches the central mass, its gravitational energy 
decreases and its kinetic energy must, therefore, increase. So the planet must go the fastest 
at the periapsis and go the slowest at the apoapsis. 
 
The speed can be found with the mechanical energy. The general formula of the energy is 
 

( )1

2
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GM m e
E

r

−
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For an elliptical orbit, this equation becomes 
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which leads to 
 
Mechanical Energy of an Object on an Elliptical Orbit 

 

2
c

mec

GM m
E

a
= −  

 
 
From this equation, the speed as a function of r can be found with the law of conservation 
of mechanical energy. 
 

21

2 2
c c

GM m GM m
mv

a r
− = −  

 
Solving this equation for v, a formula for the speed as a function of r is obtained. 
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Speed of an Object on an Elliptical Orbit 
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Speed at the Apoapsis and at the Periapsis 

 
At the periapsis, r = a (1 – e) and the speed is 
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At the apoapsis, r = a (1 + e) and the speed is 
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Speed of an Object at the Periapsis or at the Apoapsis 
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Period 
 
The period can be found with Kepler’s second law. 
 

( )1

2
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GM r e
A t

+
∆ = ∆  

 
In one period, the full area of the ellipse is swept. As the area of an ellipse is 
 

2 21A a eπ= −  
 
Kepler’s second law gives 
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Using the fact that ( )1pr a e= − , the equation becomes 
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Solving for T, the formula for the period is obtained. 
 
Period of an Object on an Elliptical Orbit (Kepler’s 3rd Law) 

  
3

2
c

a
T

GM
π=  

 
 
This formula is quite similar to the formula for a circular motion where r is simply 
substituted by a. 
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Example E1.3.1 

Halley’s Comet moves on an orbit whose distances at aphelion and perihelion are 
ra = 35.295 AU and rp = 0.587 AU (1 AU is a unit of distance equal to the average distance 
between the Earth and the Sun and which is about 1.5 x 1011 m). The mass of the Sun is 
2 x 1030 kg. 
 

 
www.uwgb.edu/dutchs/PLANETS/Comets.HTM 

a) What is the eccentricity of this orbit? 
 
The eccentricity is 
 

35.295 0.587

35.295 0.587
0.9673

a p

a p

r r
e

r r

AU AU

AU AU

−
=

+

−
=

+

=

  

 
 

b) What is the semi-major axis (a) of the orbit? 
 
The semi-major axis is 
 

2
35.295 0.587

2
17.941

a p
r r

a

AU AU

AU

+
=

+
=

=

 

 
c)  What is the period of this comet? 

 
The period is 
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d) What is the speed at the perihelion? 

 
The speed at the perihelion is 
  

11 30²
²

11

1

1

6.674 10 2 10 1 0.9673

17.941 1.5 10 1 0.9673

54.61

c
p

Nm
kg

m
UA

km
s

GM e
v

a e

kg

UA

−

+
=

−

× ⋅ × +
=

⋅ × −

=

  

 
e) What is the speed at the aphelion? 

 
The speed at the aphelion is 
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f) What is the distance between the Sun and the 

comet when it is at this position? 
 
 

The distance at this position is 
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g) What is the speed of the comet when it is at this 

position? 
 
 

The speed at this position is 
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Example E1.2.2 
 

The transfer orbit 

 
Whenever they want to place a satellite in 
a rather distant orbit around the Earth, they 
proceed by steps. First, the satellite is 
placed into a low circular orbit (low Earth 
orbit in the diagram). In the second step, 
reactors are fired once again to increase the 
speed of the rocket in such a way that its 
orbit becomes elliptical. This is the transfer 
orbit. Then, the distance at the apogee is 
adjusted to be exactly equal to the distance 
at which they wish to put the satellite into 
orbit. Finally, in the third step, the reactors 
are fired once again when the satellite is at 
the apogee in such a way that the orbit 
becomes circular again. 
 
 

www.radio-electronics.com/info/satellite/satellite-orbits/satellite-launching.php 
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Find the speed and the mechanical energy of a 75 kg satellite on these orbits if the low 
Earth circular orbit is 300 km above the surface of the Earth and the large circular orbit is 
the orbit for the synchronous satellites, whose radius is 42 300 km. (For the elliptical orbit, 
just give the speeds at the perigee and the apogee.) The radius of the Earth is 6380 km, and 
the mass of the Earth is 5.98 x 1024 kg. 
 

First step: The satellite is on an orbit 300 km above the surface of the Earth. 
 
The speed on this orbit is 
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and the mechanical energy is 
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Second step: The satellite is on an elliptical orbit (transfer orbit) 
 
To bring the satellite into a synchronous orbit, it must be on an elliptical orbit with the 
values ra = 42 300 km and rp = 6680 km. 
 
The semi-major axis and the eccentricity of the orbit are 
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The speed at the perigee is then 
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The speed of the satellite must then be increased from 7.73 km/s to 10.16 km/s in order 
to change the orbit from a circular shape to an elliptical shape that will bring the 
satellite 42 300 km from the Earth at the apogee. 

 
The speed at the apogee is 
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The energy on this new orbit is 

 

11 24²
²

7

8

2

6.674 10 5.98 10 75

2 2.449 10

6.11 10

c

Nm
kg

GM m
E

a

kg kg

m

J

−

= −

× ⋅ × ⋅
= −

⋅ ×

= − ×

 

 
The energy must then be increased by 8 9 96.11 10 2.24 10 1.63 10J J J− × − − × = ×  to 
change from the small circular orbit to the transfer orbit. 

 

Third step: The satellite is on a circular orbit with a 42 300 km radius. 
 

The speed on this orbit is 
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The speed of the satellite must then be increased from 1.61 km/s to 3.07 km/s in order 
to change the orbit from an elliptical shape to a circular shape at 42 300 km from the 
Earth. 
 
The mechanical energy on this orbit is 
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The energy must then be increased by 8 8 83.54 10 6.11 10 2.57 10J J J− × − − × = ×   to 
change from the transfer orbit to the large circular orbit. 

 
An elliptical orbit used to move from one circular orbit to another is called a Hohmann 

transfer orbit. 
 
Example E1.2.3 

To go to Mars, there is no need to use reactors during the whole journey (it would be very 
expensive to do so). The spacecraft simply need to be placed on a Hohmann transfer orbit 
with its perihelion at the Earth and its aphelion at Mars. How long will last this journey 
from the Earth to Mars? The mass of the Sun is 2 x 1030 kg. The distance between the Earth 
and the Sun 1.5 x 1011 m and the distance between Mars and the Sun is 2.3 x 1011 m. 
 

 
www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_mars/cub_mars_lesson04_activity1.xml 

 
At the perihelion, the spaceship is at the same distance from the Sun than the Earth, 
so that rp = 1.5 x 1011 m. At the aphelion, the spaceship is at the same distance from 
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the Sun than Mars, so that ra = 2.3 x 1011 m. The duration of the journey is equal to 
half the period since only half of the orbit is travelled.  
 
The semi-major axis of the transfer orbit is 
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Therefore, the duration is 
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Of course, they must ensure that Mars is there when the ship arrives at the aphelion. 
The ship cannot be launched at any moment. The right period to launch is called the 
launch window. 
 

 
Orbits of Two Objects of Similar Mass 
 
Up to now, only orbits where the central mass is much greater than the mass of the orbiting 
object were examined. In this case, the central mass does not move much and the small 
mass describes an orbit around the largest mass. 
 
However, what happens if the two objects have similar masses? The gravitational forces 
are then large enough to move the two masses, and the situation is not as simple as before. 
Yet, the solution to this problem is still relatively simple. Two objects describe elliptical 
orbits with the centre of mass located at one of the foci of each ellipse. 
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Although the formulas for studying such a system are not so much more complicated than 
that for a system where a mass is much greater than the other, this kind of system will not 
explore here. 
 
 

 (e = 1) 

 
If the eccentricity is exactly equal to 1, then the formula 
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becomes 
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This equation is the equation of a parabola. To have this trajectory, the speed at the closest 
point from the central mass must be given by 
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The central mass is then at the focus of the parabola. 
 

 
 

en.wikibooks.org/wiki/Astrodynamics/Orbit_Basics 

 
Mechanical Energy 

 
The mechanical energy of the object on a parabolic trajectory is 
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Mechanical Energy of an Object on a Parabolic Trajectory 

 
0

mec
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An object has this kind of orbit when its initial speed is close to zero when it is very far 
from the Sun. The object then approached the central mass to make a single pass. It then 
leaves the Sun to return to a very large distance where it will again have a very small speed. 
The object will not come back to the Sun because its energy is not negative, which means 
that the object is not bound to the central mass. 
 
 
Speed 

 
The speed of the object is easily found from the position with the mechanical energy. 
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Example E1.4.1 

A comet follows a parabolic trajectory around the Sun 
(M = 2 x 1030 kg). How long does it take for the comet to pass 
from position 1 to position 2, knowing that the speed at the point 
closest to the Sun is 100 km/s? 
 
Hint: the area of a part of a parabola is 
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The time can be found with the Kepler’s second law. 
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However, in order to apply this formula, the distance of the comet at its closest position 
to the Sun must be known. This distance can be found with the mechanical energy. 
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Therefore, Kepler’s second law becomes 
 

( )

( )11 30 10²
²

15 ²

1

2

6.674 10 2 10 2.6696 10 1 1

2

1.3348 10

c p

Nm
kg

m
s

GM r e
A t

kg m
A t

A t

−

+
∆ = ∆

× ⋅ × ⋅ × +
∆ = ∆

∆ = × ∆

 

 
For the area of the parabola, we have 
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The area is half the area of the part of a parabola given by the 
formula. 

 

( ) ( ) ( )
2102

20
4 2.6696 102 4 41 2 1

9.5024 10 ²
2 3 2 3 3 3

p p p
mr r rbh

A m
×⋅

∆ = = = = = ×  
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 (e > 1) 

 
If the eccentricity is greater than 1, then the formula 
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describes a hyperbola. To have this trajectory, the speed at the closest point from the central 
mass must be given by 
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en.wikibooks.org/wiki/Astrodynamics/Orbit_Basics 

 
Then, the energy of the object on the hyperbolic trajectory is 
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Mechanical Energy of an Object on a Hyperbolic Trajectory 
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The object does not come back because its energy is not negative, which means that the 
object is not bound to the central mass. 
 
In this case, the object comes from a great distance with a certain speed and approaches 
the central mass to make a single pass. It then leaves to return to a very large distance where 
he will move with a certain speed. 
 
Here’s how the shape of the hyperbolic trajectory changes as a function of the eccentricity 
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Very few objects were observed to follow hyperbolic trajectories with a high eccentricity. 
For all the known comets, the greatest value of the eccentricity observed was 1.057. 
 
 

 
Here is a small summary of all possible trajectories according to the speed at the point of 
closest proximity to the central mass or the eccentricity. 
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One may then wonder what happens if 
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In fact, this situation is impossible. If you have a lower speed than the speed needed for a 
circular orbit, then there is too much centripetal force and the object moves closer to the 
central mass. The following elliptical orbit is then obtained. 
 

 
 
However, this situation is impossible because rp was defined as being the distance of the 
point closest to the central mass, which is not the case in this diagram. It is impossible to 
have a speed lower than the speed needed for a circular orbit at the point closest to the 
central mass. 
 
 

 
In reality, the shape of the orbits is way more complex than previously seen and the orbits 
are never perfect ellipses, parabolas or hyperbolas. If there were only two rigid bodies in 
the universe, then the orbits would be perfect. As soon as there are other bodies nearby, the 
disturbances made by these other bodies slowly change the orbit of an object. 
 
In the Solar System, the motion of each planet is perturbed by the gravitational force 
exerted by every other planets. Note that the motion of less massive objects is easier to 
change. The trajectories of comets, which are relatively light bodies, are easily altered, 
especially if they pass near a massive planet like Jupiter. Asteroids are also heavily 
influenced by the gravitational force of Jupiter. Even if they are not that close to Jupiter, 
the gravitational force exerted by the latter is large enough to have long-term effects. 
 
This diagram shows how the orbit of an asteroid (in red) changes when it passes too close 
to Jupiter (in green) over a 50-year period. 
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Thanks to disturbance, the planet Neptune was discovered in 1846. William Herschel had 
discovered the planet Uranus quite by chance in 1781, and its orbit was studied from this 
moment on. In 1820, it was becoming clear that there was a problem with the orbit of this 
planet as it appeared to deviate from the predicted orbit. Some astronomers thought then 
that another unknown planet (which was eventually called Neptune) located beyond the 
orbit of Uranus was disrupting its motion. (Indeed, Uranus and Neptune were closest to 
each other in 1821, and the strength of disturbance was then at its peak.) John Couch Adams 
and Urbain Le Verrier both started calculating the position of the disturbing planet and 
both basically obtained the same position for Neptune. The result was a little approximate 
because there were some assumptions to make, such as the distance of this new planet, for 
example. When Adams sent its results to the Greenwich Observatory in September 1845, 
the astronomers there were unable to confirm the existence of the new planet. Actually, 
they put little efforts into the task, because the director of the Observatory was not so 
impressed by the method used. “Why should they put much effort for an uncertain 
outcome?” he said. Then, in June 1846, Le Verrier publishes the results of his calculations. 
The similarity of his results with those of Adams then convinced the observers in 
Greenwich that Adams’s calculations were perhaps not as bad as they thought and they 
started a more sustained search of the planet. Meanwhile, le Verrier sent his results to the 
Berlin Observatory in September 1846, after having tried in vain to interest French 
astronomers. Fortunately, the Berlin Observatory had an excellent map of the area of the 
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sky where Neptune should be according to Le Verrier, which allowed them to easily spot 
any change in this area of the sky. In less than an hour, the astronomers in Berlin discovered 
Neptune about a degree from the position predicted by Le Verrier. After the announcement 
of this discovery, astronomers in Greenwich found they had observed Neptune twice 
without realizing it… All that to say that the law of gravitation has allowed us to discover 
Neptune by calculation. This is one of the greatest successes of Newton’s gravitational 
theory. 
 
Most of the time, the effects of disturbances tend to cancel each other over time and the 
orbit, although disrupted, is relatively stable. However, if the largest disturbances always 
occur at the same place on the orbit at regular intervals, then the orbit is not stable. Thus, 
if an asteroid has a period of exactly half that of Jupiter, the maximum disturbance, which 
occurs when the asteroid and Jupiter are closest to each other, always happens at the same 
place on the orbit of the asteroid, every two revolutions of the asteroid in its orbit. Then, 
instead of cancelling each other over time, the disruptions add up and slowly move the 
asteroid out of that orbit. This is called gravitational resonance. Looking at the distribution 
of asteroids in the solar system, it can actually be noted that there is no asteroid on an orbit 
with a semi-major axis that corresponds to orbits with periods which are simple ratios of 
the period of Jupiter. The same phenomenon occurs in the rings of Saturn. Disturbances 
made by the satellites 
around Saturn prevent small 
rocks in the ring to have 
certain orbits, thereby 
explaining the dark gaps in 
the ring. 
 

 

www.lasam.ca/billavf/nineplanets/saturn.html 

 
Perturbations also affect more massive objects like the Earth. Because of disturbances 
made by other planets, the eccentricity of Earth’s orbit varies over time. As the planets are 
not perfect spheres, other planets also exert a torque that can change the direction of the 
axis of rotation of the planets. The axis can even be completely inverted by this torque so 
that the planet rotates in a direction opposite to the rotation of all the other planets, as is 
currently the case for Venus. For the Earth, such a drastic change cannot happen because 
the Moon tends to stabilize the tilting angle of the axis of rotation of the Earth so that it 
may only change by a few degrees. All these changes to the motion of the Earth have a 
huge impact on Earth’s climate and are mostly responsible for the onset of ice ages. 
 
It is impossible to give the equations describing the motion of planets taking into account 
the perturbations made by other planets. It has been shown that it is impossible to give an 
exact analytical solution if there are 3 bodies or more interacting. The orbits are now found 
with computer simulations. 
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Definition of Gravitational Field 
 
If an object is placed somewhere and a gravitational force acts on it, then there is a 
gravitational field at this location. As a force acts on any mass placed near the Earth, it 
follows that there is a gravitational field around the Earth. 
 
This field by noted by the letter g. By definition, the field has the following characteristics: 
 

1) If the field is stronger, the force is larger. 
2) If a more massive object is placed in a field, the force on the object is larger. 

 
The second characteristic is easily noticeable on the surface of the Earth. If a small rock is 
placed somewhere, a certain force acts on the rock. If a rock with twice the mass is placed 
at the same location, the force exerted on the rock is twice as large. 
 
The strength of the field can vary from one location to another. It is for this reason that is 
called a field because, in mathematics, a field is a quantity whose value can change from 
one location to another. 
 
According to the two characteristics aforementioned, the gravitational field can be defined 
by the following formula. 
 
Force on an Object of Mass m in a Gravitational Field 

 

F mg=
�

�

 
 
 
Since the force is a vector, g must also be a vector. This vector points in the direction of 
the force acting on an object placed at this location. Therefore, the gravitational field is a 
vector field. 
 
The SI unit for the field is N/kg or m/s² (which are two equivalent units). 
 
 
What Generates the Field? 
 
The answer is not so complicated. If there is a gravitational field somewhere, then a 
gravitational force is exerted on a mass placed at this location. However, if there is a 
gravitational force, it is because other bodies attract the mass. So if there’s a field 
somewhere, it is because there are masses in the vicinity this place. This means that 
 
 

Masses create a gravitational field around them. 
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For example, there is a gravitational field in your room because there is a body with an 
enormous mass near your room which creates a field around it: the Earth. 
 
 
Gravitational Field of a Point Mass of Mass M 
 
If masses create a field around them, it must be possible to determine the magnitude of this 
field. Let’s start with a simple case: the gravitational field made by a point mass of mass 
M. 
 
With two point masses (M and m), the force between them is 
 

2

Mm
F G

r
=  

 
Another way to look at this force is to say that a force acts on the mass m because the mass 
m is in the gravitational field created by the mass M. Then, the force is 
 

F mg=  
 
As these two ways to see the gravitational force must give the same result, the following 
equation must be true. 
 

2

Mm
mg G

r
=  

 
Thus, the field created by the mass M is 
 
Magnitude of the Gravitational Field of a Point Mass of Mass M 

 

2

GM
g

r
=  

 
 
This formula indicates that the gravitational field decreases rapidly with the distance from 
the mass. Also, it indicates that gravitational field is stronger around more massive objects. 
The direction of the field at different locations around the mass M is shown in the diagram. 
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www.vias.org/physics/bk4_06_03.html 

 
The field always points towards the mass M, because this is the direction of the force 
exerted by the mass M on the masses around it since the gravitational force is always 
attractive. 
 
 
Gravitational Field Generated by an Extended Object 
 
To calculate the field made by an extended object, the object is divided into infinitesimally 

small pieces. The fields made by each 
of these small pieces of mass dm are 
identical to the field made by a point 
mass. The magnitude of this field is 
then 
 

2

Gdm
dg

r
=  

 
Finally, a vector sum of these fields 

created by the small masses is made to obtain for the total field. This sum of infinitesimal 
field is an integral. 
 
As said previously, you are not quite ready to do integrals for objects in two or three 
dimensions. You can, however, do integrals for one-dimensional objects like a rod. 
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Gravitational Field of a Rod of Constant Density 
 
Here, the gravitational field at point P at a distance b from the end of a straight uniform rod 
of length L is sought. To calculate this field, the rod is divided into small slices of length dx. 

 

 
online.cctt.org/physicslab/content/phyapc/lessonnotes/Efields/EchargedRods.asp 

 
The magnitude of the gravitational field made by one of these small pieces, which will be 
noted dg, is 
 

2

dm
dg G

x
=  

 
where dm is the mass of the small piece and x is the distance between the small piece and 
the point P. (The point P is at the origin) 
 
If the rod has uniform density, then the mass is dm = λ dx, where λ is the linear density of 
the rod. Therefore, the gravitational field made by the piece is 
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The magnitude of the total field is simply the sum of the fields made by each of the pieces. 
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Since λL is the mass of the rod, the field is 
 
Gravitational Field of a Uniform Rod 
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In the following direction 

 

 
 
This calculation is by far the simplest that can be done to find the field of an extended 
object. In most cases, the vector dg must be resolved into components and three integrals 
must be calculated (one for each component). It is so beautiful. 
 
 
Gravitational Field of a Sphere 
 
The gravitational field of a sphere is of paramount importance since this is the shape of 
planets and stars, the only objects to have sufficient mass to generate non-negligible 
gravitational forces. It could even be said that the calculation of the gravitational field for 
all shapes other than the sphere is a simple intellectual exercise whose sole purpose is 
entertainment. 
 
The field of a sphere is found in the same way as what was done for the rod: the sphere is 
divided into small pieces and the field made by each of the pieces is found. The fields made 
by each of the small pieces are then added with an integral to get the total field. The result 
of this rather complex calculation (we’ll spare you the details) is surprisingly simple. On 
the outside of a sphere, the gravitational field is identical to the field made by a point mass 
of the same mass which would be located in the centre of the sphere. In other words, the 
gravitational field outside a sphere is given by 
 
Gravitational Field Outside a Sphere 
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where r is the distance from the centre of the sphere. (This result, as well as those that will 
follow, is valid only if the sphere is symmetrical, which means that it must be identical in 
all directions from the centre. The density can change, but only as a function of the distance 
from the centre of the sphere.) 
 
Inside the sphere, the gravitational field depends on how the mass is distributed. If the mass 
is evenly distributed, the field is 
 
Gravitational Field Inside a Sphere of Constant Density 

 
 

 
 

3
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g
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The graph of the strength of the field as a function of the distance from the centre of a 
uniform sphere is, therefore, 
 

 
en.wikibooks.org/wiki/A-level_Physics_(Advancing_Physics)/Gravitational_Fields/Worked_Solutions 

 
This means that the gravitational field of a uniform sphere reaches its maximum value at 
the surface of the sphere. 
 
 
Why Use the Gravitational Field? 
 
The field allows us to split the calculation of the force between two objects into two steps, 
which make the calculation of the force much easier. For example, it would be extremely 
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difficult to directly calculate the gravitational force between these two rods with the law of 
gravitation. 

 
 
The calculation of the force is instead done in two steps. 
 

1) Calculate the gravitational field made by one of the objects 
 
The field is found with a formula for the field created by this object. If no 
formula is known, the field must be calculated with an integral. 
 
Here, the field made by the rod on the left is sought. We have a formula for the 
field created by a rod. The field is 
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where x is used for the distance since the atoms in the 240 kg rod are not always 
at the same distance from the rod on the left. 

 
 

2) Calculate the force on the other object with F = mg 
 
This step can be easy, but it can also be complicated. Indeed, if the object is not 
in a uniform field, the object must be divided into smaller pieces and the force 
on each of the pieces must be calculated. The total force is then found by adding 
the forces on each piece with an integral. 
 
Here, the field made by the rod on the left is not uniform. The rod on the right 
must then be divided into infinitesimally small pieces of length dx. 

 

 
 
The force on one of these small pieces is 
 

dF gdm= −  
 
It is negative because it is directed towards the left since the other rod attracts 
the piece. Using the mass of the piece (dm = λ dx) and the formula for the field, 
the force is 
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×
= −
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As the linear density of the rod on the right is �2 = 240 kg/6 m = 40 kg/m, the 
force is 
 

( ) ( )

²4000100
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The total force is then 
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The integral goes from 2 m to 8 m, because the rod on the right starts 2 m from 
the tip of the rod on the left and ends 8 m from the tip of the rod on the left. This 
integral gives 

 

( ) ( )
²

8

2

8²

2

²

7

4000
ln log 5

5

4000
ln

5 5

4000 8 2
ln ln

5 13 7

1.192 10

kg
m

m

m

mkg

m

m

kg

m

G
F x x m

m

G x

m x m

G

m

N
−

− ×
= − +  

− ×   
=   +  

− ×     
= −    

    

= − ×

 

 
By using the gravitational field, the force was calculated by making two integrals one after 
the other. Imagine what this calculation would have looked like if we had attempted to 
calculate the force directly with the law of gravitation without using the field. Two nested 
integrals would then have to be calculated simultaneously… Please note that the example 
given was relatively simple since it is a problem in one dimension. Without the field in 
three dimensions, two simultaneous triple integrals have to be solved to calculate the force 
between two objects in three dimensions. The use of the field renders calculations a bit 
simpler. 
 
 
The Force Between Two Spheres 
 
The force between two spheres can now be calculated. The calculation is made in two steps, 
as the calculation of the force between two rods done previously. First, the gravitational 
field made by one of the spheres is calculated. The result is known in this case: a field 
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identical to that of a point mass located at the centre of the sphere. Then, the force on the 
second sphere is obtained by calculating the force on each small pieces of the second sphere 
caused by the field of the first sphere and by summing all these forces by an integral. The 
result is remarkably simple once again. The force between the spheres is the same as it 
would be if the entire mass of each sphere were concentrated at the centre of the sphere! 
Two quite complex integrals (one for the calculation of the field of the first sphere and 
another for the force on the second sphere) had to be calculated, but the result is simple. 
The force between two spheres is 
 
Gravitational Force between Two Spheres 

 

2

GMm
F

r
=  

 
where r is the distance 
between the centres of 
the spheres. 
 
 
 

 
 
 
Application: Field at the Surface or Near the Surface of a 
Planet 
 
Example E1.8.1 

What is the magnitude of the gravitational field… 
 

a) on the surface of the Earth if it has a mass of 5.972 x 1024 kg and a radius of 
6378 km? 
 
The surface is 6378 km from the centre of the Earth. Using the formula of the field 
made by a sphere, the field is 
 

( )

11 24²
²

22 6

6.674 10 5.972 10
9.80

6.378 10

Nm
kg N

kg

kgGM
g

R m

−× ⋅ ×
= = =

×
 

 
b) 1000 km above the surface of the Earth if it has a mass of 5,972 x 1024 kg and a 

radius of 6378 km? 
 
At 1000 km above the surface, the distance is 7378 km from the centre of the Earth. 
Using the formula of the field made by a sphere, the field is  
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You can see that the gravitational field decreases as one moves farther away from 
the Earth. 

 
 

c) on the surface of the Moon if it has a mass of 7.35 x 1022 kg and a radius of 
1738 km? 
 

( )
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²
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This field is about a sixth of the field on the surface of the Earth. 
 
 

Example E1.8.2 

A 100 kg satellite is located between the Earth and the Moon, at the place indicated in the 
diagram. The mass of the Moon is 7.35 x 1022 kg, and the mass of the Earth is 
5.97 x 1024 kg. 
 

 
 

a) What is the field at this place? 
 
The total field is the sum of the fields made by each planet. As the field is always 
directed towards the planet causing the field, the field made by the Earth is towards 
the left and the field made by the Moon is towards the right. 
 
The field is then 
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A negative answer means that the gravitational field is directed towards the Earth. 
 
 

b) What is the force on the satellite? 
 
The force is 

 

( )100 0.009817

0.9817

N
kg

F mg

kg

N

=

= ⋅ −

= −

 

 
As the force is negative, it is directed towards the Earth. 

 
 
Correction to the Gravitational Field at the Earth’s Surface 
 
In a previous example, it was calculated that the gravitational field at the surface would be 
9.80 N/kg everywhere if the Earth were a perfect sphere. 
 
However, the Earth is not a perfect sphere. It rather has the shape of a slightly flattened 
sphere. Thus, the gravitational field strength varies with latitude. The calculation of the 
value of the field, in this case, is difficult enough but a good approximative result is 
 

( )2 49.780327 0.0516323sin 0.0002269sin N
kg

g ϕ ϕ= + +  

 
where φ is the latitude. As Quebec City lies at a latitude of about φ = 460, the gravitational 
field should be 9.807105 N/kg in Quebec City. 
 
There can be other deviations of the order of 10-3 N/kg to the value given by this last 
formula since the Earth is not a perfect ellipsoid of revolution (there are changes in altitude) 
and does not have a perfectly uniform composition. The value of g can, therefore, vary 
depending on the local geological structure. This is what is called the gravity anomaly. The 
following map shows the anomaly at the surface of the Earth (the Gal is a unit worth 
0.01 N/kg). 
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www.zonu.com/detail-en/2009-11-19-11208/Gravity-anomalies-in-the-world.html 

 
It can be estimated that the anomaly in Quebec City is approximately -20 mGal and that 
the intensity of the field is about 9.80711 N/kg – 0.00020 N/kg = 9.80691 N/kg. 
 
The gravity anomaly is never very large, of the order of 10-3 N/kg at most but it is 
sufficiently large so that certain geological structures of interest in the soil, such as oil 
reservoirs, can be detected. The gravity anomaly 
also lead to the discovery of the crater made by 
the meteorite responsible for the extinction of 
the dinosaurs 65 million years ago. It is on the 
Yucatan Peninsula in Mexico (image to the 
right). 
 
To discover these elements, very precise 
instruments are used. Currently, there are 
instruments capable of detecting variations as 
low as 10-8 N/kg in Earth’s gravitational field. 
These instruments are so sensitive that they 
detect a change in the gravitational field if the 
device is only lifted 5 mm! 

planets.agu.org/Interview-with-Dr-Wasson.php 
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The Gravitational Field inside a Planet 
 
Example E1.8.3 

What is the gravitational field 500 km below the surface of the Earth (assuming that the 
density of the Earth is the same everywhere)? The mass of the Earth is 5.97 x 1024 kg, and 
its radius is 6380 km. 
 

The field is 
 

( )
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×
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From this last formula, it is possible to think that the gravitational field always decreases 
as you get closer to the centre of the Earth. However, this is not the case since the Earth is 
not uniform. As its density is higher in the centre than near the surface, the gravitational 
field actually increases a little as one moves towards the centre of the Earth from the surface 
and only begins to decrease more deeply inside the Earth. 
 

Depth g Depth g 

km m/s² km m/s² 
0 9.82 1400 9.88 

33 9.85 1600 9.86 
100 9.89 1800 9.85 
200 9.92 2000 9.86 
300 9.95 2200 9.90 
413 9.98 2400 9.98 
600 10.01 2600 10.09 
800 9.99 2800 10.26 

1000 9.95 2900 10.37 
1200 9.91 4000 8.00 

 
The exact variation of g for depth larger than 4000 km is not known, but it is known that it must 
be equal to 0 in the centre of the Earth (6380 km). 

 
The graph of g as a function of depth is 
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https://upload.wikimedia.org/wikipedia/commons/8/86/EarthGravityPREM.jpg 
 
 

 
Magnitude of the Tidal Force 
 
Tides are due to the fact that an extended object lies in a non-uniform gravitational field. 
To show the origin of tidal forces, the forces exerted on the Moon by the Earth will be 
examined. 
 

 
 
The Moon is in the gravitational field of the Earth, and this field decreases with distance. 
The difference in intensity of the gravitational field between the centre and a point on the 
surface of the Moon directly facing the Earth will be calculated. As the Moon is not very 
large, it will be assumed that the rate of change of the field is constant. 
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As it is assumed that the rate is constant, this is also the difference between the field at the 
centre of the Moon and the field at the surface of the Moon directly opposite the Earth. 
 
Now let’s look at the effect of this difference in field intensity on two objects on the Moon 
surface. Each of these objects is attracted by the Moon and by the Earth. As the objects are 
on the surface of the Moon, a normal force is exerted on each of them. 
 

 
 
In order to be able to write the force equation for these objects, the acceleration is needed. 
The Moon (and everything on it) accelerates towards the Earth since the Moon is making 
a circular motion around the Earth. This acceleration is caused by the force of gravitation 
exerted by the Earth and its magnitude is 
 

2

2

Earth Moon
Moon

Earth

GM M
M a

r

GM
a

r

=

=

 

 
For the object on the right side on the Moon (side facing the Earth), Newton’s second law 
is 
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( )Earth at the centre of the Moon
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The first term in the parenthesis is cancelled by the right side of the equation. The equation 
then becomes 
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The normal force is, therefore, smaller than it would have been without the presence of the 
Earth (without the Earth, the normal force would have been simply equal to the weight). A 
person on the Moon (if there was one) would then have the impression that a force is acting 
upwards on the object. This force is the tidal force. 
 
On this side of the Moon, the object makes a circular motion with a radius slightly smaller 
than the motion of the centre of the Moon. Then, the centripetal force required to make this 
motion is a little smaller. However, the gravitational force exerted by the Earth is slightly 
larger because the object is closer to the Earth. The force towards the centre is, therefore, 
greater than the centripetal force required to make the circular motion. This excessive force 
made by the Earth is offset by a decrease in the normal force, and this allows the object to 
follow the circular motion of the Moon. 
  
For the object on the left side of the Moon (side opposite the Earth), Newton’s second law 
is 

( )Earth at the centre of the Moon
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The first term in the parenthesis is again cancelled by the right side of the equation. The 
equation then becomes 
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Once again, the normal force is smaller than it would have been without the presence of 
the Earth. The tidal force is a force acting upwards on the object. We note that the 
magnitude of the tidal force is identical on both sides of the Moon. 
 
On this side of the Moon, the object made a circular motion with a radius slightly larger 
than the motion of the centre of the Moon. Then, the centripetal force required to make this 
motion is a little larger. However, the gravitational force exerted by the Earth is slightly 
smaller because the object is farther away from the Earth. The force towards the centre is, 
therefore, smaller than the centripetal force required to make the circular motion. This lack 
of force made by the Earth is offset by a decrease in the normal force, and this allows the 
object to follow the circular motion of the Moon. 
 
So far, you might think that this reasoning applies only to the Moon, but the situation is not 
that simple. The Moon does not simply revolve around an immobile Earth. In fact, the two 
planets revolve around the centre of mass of the system. The situation for the Earth is thus 
quite similar to that of the Moon, which means that tidal forces made by the Moon act on 
the Earth just like tidal forces made by the Earth act on the Moon. 
 
In general, all the planets or stars near a body exert a tidal force on this body. The tidal 
force is 
 
Tidal force 

 

3

2
tide

GMmR
F

r
=  

 
 
where M is the mass of the planet (or star) that exerts the tidal forces, m is the mass of the 
object on which the tidal forces are exerted, R is the radius of the planet where is the object 
on which the tidal forces are exerted and r is the distance between the two bodies. 
 
Therefore, the Sun also exerts tidal forces on the Earth, but they are about half as strong as 
those exerted by the Moon even though the mass of the Sun is much larger. These forces 
are weaker because Sun is farther away than the Moon and the tidal forces decrease quickly 
with distance. 
 
According to our calculation, the directions of the tidal forces on each side of the planet is 
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www.oassf.com/en/earth.html 

 
The calculation has been made for only two places on the surface of the planet, but this 
force exists everywhere inside the planet and on the planet’s surface. When this calculation 
is made for any location on the surface, the following directions are obtained. 
 

 
physics.stackexchange.com/questions/66400/how-you-feel-in-outer-space-vs-orbit 

 
 
Example E1.9.1 
 
What is the magnitude of the tidal force exerted by the Moon on a 100 kg object on the 
surface of the Earth (on the side towards the Moon or opposed to the Moon)? The mass of 
the Moon is 7.35 x 1022 kg, the Earth radius is 6378 km and the distance between the Moon 
and the Earth is 384 000 km. 
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The force is 
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It is not much (almost 10 million times smaller than the weight of the mass), but it is 
large enough so that some effects appears. 

 
 
Changes in Sea Levels Caused by Tidal Forces 
 
The previous image shows that the tidal forces seek to stretch the object on which the tidal 
forces act in a direction parallel to the direction of the body which exerts the tidal forces 
and to compress it in a perpendicular direction. This could result in a deformation of the 
planet on which the forces act. On Earth, water is displaced by these forces so that there 
are two areas where the water accumulates (the bulges) and there are areas where there is 
less water. We then have the following situation. 
 

 
tpelesmarees.pagesperso-orange.fr/phenomene_maree.html 

 
In this situation, there is plenty of water in Brest and it is high tide there. There is less water 
in Acapulco, and it is low tide there. As the Earth rotates, Acapulco will move to the area 
where there is plenty of water (facing the Moon) in 6 hours, then to the other area where 
there is less water 6 hours later, then to the other area where there is plenty of water 
(opposite to the Moon) 6 hours later to return finally to the area where there is less water 
another 6 hours later. In 24 hours, there were 2 high tides and 2 low tides. 
 
In fact, the period is 24 hours and 50 min because the Moon revolves around the Earth and, 
therefore, changes its orientation relative to the Earth, as shown in this diagram. 
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www.je-comprends-enfin.fr/index.php?/Eau-ondes-et-mouvement/eau-terre-lune-soleil-et-marees/id-menu-14.html 

 
Actually, the Moon is not the only planet exerting tidal forces on the Earth. All other 
celestial bodies in the Solar System exert a force. In practice, the force made by all these 
bodies can be neglected, except for those exerted by the Moon and by the Sun, which exerts 
tidal forces half as strong as those exerted by the Moon. The extent of the accumulation of 
water will, therefore, be different depending on the configuration of the Moon, the Sun, 
and the Earth. 
 
When the Moon, the Earth, and Sun are aligned (full moon or new moon), the tidal bulges 
made by the Moon and the Sun combine, resulting 
in a larger bulge. The tides then have a maximum 
amplitude. These are the spring tides (which do not 
necessarily occur in spring). 
 
When the Moon, the Earth, and Sun form a 90° 
angle (it is then said that the Sun and the Moon are 
in quadrature), the tidal bulge made by the Sun 
forces cancel part of the bulge made by the Moon. 
The resulting tidal forces are weaker and the 
accumulation of water is less important. The 
amplitude of the tides is smaller. These are the 
neap tides. 

www.ifremer.fr/lpo/cours/maree/forces.html 
 
Moreover, the distance of the Moon is not always the same because its orbit is elliptical. 
The distance varies only by 7% compared to the average distance but this causes a variation 
in tidal forces of about 20% since the effects of tides vary with the cube of the distance. 
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Tides made by Moon should then be expected to be 20% larger when the Moon is closest 
to the Earth. If this occurs simultaneously with a full moon or a new moon, the amplitude 
of the tides can be exceptional. 
 
A calculation, taking into account the Moon and the Sun, shows that the variation in sea 
levels should be about 50 cm. Actually, the amplitude of the tides should be even lower 
because tidal forces not only rise the oceans, they also raise Earth’s crust by about 20 cm. 
Thus, if the sea level rises 50 cm and the continent rises 20 cm, the difference is only 30 cm, 
which is basically the amplitude of the tides in the oceans. Sometimes the shape of the 
shoreline can amplify the tidal effect through various mechanisms, and the resulting 
amplitude may be much larger. The highest tides in the world are found in the Bay of 
Fundy, where there can be a variation of 17 metres in sea level between low tide and high 
tide. 
 

 
bayoffundy.blogspot.ca/2010/09/biggest-tides-of-year-today.html 

 
The water level changes in the Bay of Fundy can be seen in these clips. 
http://www.youtube.com/watch?v=5W2sM1Ma7YA 
http://www.youtube.com/watch?v=u3LtEF9WPt4 
 
 
Roche Limit 
 
It is worth noting that the tidal forces increase very rapidly if the distance between a planet 
and the central mass decreases. If a planet is too close to the central mass, the tidal forces 

on a rock on the surface of 
the planet may exceed the 
weight of this rock. Then, 
the rocks on the planet 
would be lifted from the 
surface and the planet 
would be slowly destroyed. 
 
 

fr.wikipedia.org/wiki/Limite_de_Roche 
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Let’s see how far from the central mass this will happen. The mass of the planet will be 
denoted Mp. At the limit, called the Roche limit, the tidal force, which seeks to lift the 
object, is equal to the gravitational force that attracts the object towards the ground. This 
means that 
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If the densities of the central mass and the planet are constant, the masses are (assuming 
they are spherical) 
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The equation then becomes 
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In fact, Édouard Roche made a better analysis taking into account the fact that the planets 
or stars would deform under the effect of tidal forces, losing their spherical shape. He then 
obtained a better solution, which is 
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Roche Limit 

 

32.42285 c
c

p

r R
ρ

ρ
=  

 
�c is the density of the star or planet exerting the tidal forces 

 �p is the density of the star of the planet subjected to the tidal forces 
Rc is the radius of the star or planet exerting the tidal forces 

 
If the densities of the central mass and the planet are identical, the Roche limit is simply 
2.42285 times the radius of the central mass. For the Earth (Rc = 6378 km), this limit is 
15 450 km from the centre of the Earth. 
 
Thus, if the distance between the Moon and the Earth were smaller than 15 450 km, the 
Moon would be slowly destroyed by tidal forces since the forces seeking to stretch the 
Moon would be greater than the gravitational force that seeks to keep the Moon together. 
As the Moon is 384 400 km away, it is far from the Roche limit. 
 
Tidal forces also prevent rocks from clumping together with the force of gravity to form a 
bigger satellite if these rocks is inside the Roche limit. 
 
Notice that you are currently inside the Roche limit of the Earth. Yet, you are not torn apart 
by tidal forces because the gravitational force is not the force that keeps the cells of your 
body together. Instead, they are held together by electrical forces that are much greater than 
the tidal forces acting on your body. 
 
Tidal forces can become even stronger in areas where the gravitational field varies very 
quickly. Near a black hole, the tidal forces are so large that they would destroy any 
astronaut too close to the black hole. As forces seek to stretch the object in on direction 
and compress the object in the 
other direction, an astronaut 
would be stretched as a result 
of these forces, a process 
called “spaghettification”. 
 

 

community.emc.com/people/ble/blog/2011/11/06/holographic-principle-to-multiverse-reality 
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Long-Term Effects of Tidal Forces 
 
Lengthening of the Day 

 
The rotation of the Earth drags the two tidal 
bulges in the direction of the rotation. Hence, 
the two tidal bulges are not directly in line 
with the Moon but are instead offset by about 
3° from the direction of the Moon. In the 
diagram, the gravitational forces made by the 
Moon on these bulges are shown. 
 
Each of these forces exerts a torque on the 
Earth, but the torque on the bulge facing the 
Moon is larger because the force is greater 
since this bulge is closer to the Moon. Thus, 
the two torques do not vanish a net torque is 
exerted on the Earth. This torque is opposed 
to the rotation of the Earth and, therefore, 
slows down Earth’s rotation. The period of 
rotation changes very slowly so that the day 
currently lengthens by about 2 ms per 
century. However, this can represent a 

considerable variation on a geological scale, especially since the effect was somewhat more 
significant in the past. As the effect is cumulative, it can be calculated that the 20th century 
lasted approximately 0.1 seconds longer than the 19th century. When the Earth was formed 
4 billion years ago, the day had a duration of about 15 hours. 380 million years ago, the 
day lasted 22 hours and it now lasts 24 hours. The day will continue to lengthen and would 
reach a length of 47 days in 50 billion years (but this will not happen because the Earth and 
the Moon will be destroyed by the Sun in 5 billion years). 
 
The same thing happened to the Moon, but with greater intensity. Even if there’s no water 
on the Moon, there are still tidal bulges resulting from ground uplifts. The slowdown of 
the rotation of the Moon was much faster, however, since its moment of inertia is 
significantly smaller. The slowdown was so fast that the Moon finally arrived at what the 
tidal forces are attempting to do: to stop the rotation relative to the other body. That is why 
the Moon always has the same side facing the Earth. 
 
This situation is quite common. The four largest moons of Jupiter also have the same side 
facing Jupiter. This is the equilibrium position to achieve and, given enough time, all two-
body systems will eventually have the same side facing each other. Pluto and its satellite 
Charon is the only known example where both bodies have reached this equilibrium 
position. In theory, the next system in the Solar System that should reach this equilibrium 
is the Earth and the Moon (but they will not because the Sun will die before this happens). 
 

www.aerospaceweb.org/question/astronomy/q0262.shtml 
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With an elliptical orbit, slightly different situations may occur. Mercury, the planet on 
which the Sun exerts the largest tidal forces, does not have the same side always facing the 
Sun. Instead, the period of rotation of Mercury is exactly two thirds of the period of 
revolution around the Sun so that two opposite locations on Mercury alternate to face the 
Sun at perihelion. 
 
 
The Moon Moves Farther From the Earth 

 
If the Moon exerts a force on the tidal bulges, then the tidal bulges also exert a force on the 

Moon. Much of this force is directed 
towards the Earth and helps to make the 
centripetal force, but a small tangential 
component is heading in the same direction 
as the motion of the Moon around the Earth. 
 
This force accelerates the Moon and allows 
it to gain energy. The Moon then moves 
slowly away from the Earth at a rate of 3 to 
4 cm per year. The radius of the orbit of the 
Moon increases continuously, thereby 
increasing the duration of the month. This 
process will continue until the period of 
revolution of the Moon around the Earth 
reaches 47 days in 50 billion years. The 
distance between the Moon and the Earth 
will then be of a little over 550 000 km. (It 
is 384 400 km now.) 
 

www.aerospaceweb.org/question/astronomy/q0262.shtml 
 
If the period of revolution of a moon around a planet is smaller than the period of rotation 
of the planet, the two effects made by the tidal forces are in the opposite direction: the 
planet rotates faster and faster and the satellite gets closer and closer to the planet until it 
crashes on it. This is what is happening right now with the largest moon of Mars, Phobos. 
 
Tidal forces generate a great quantity of heat. In the case of the Earth, the heat is generated 
by the constant raising and lowering of the oceans and the continents. This generates about 
2% of the internal heat of the Earth (estimated at 2 x 1019 J per year compared to 1021 J per 
year for radioactive disintegrations). This contribution was more important in the past when 
the Moon was closer to the Earth. The heat generated by tidal forces is more important in 
moons although it decreases a lot once the satellite reaches its equilibrium position by 
always having the same side facing the planet. Therefore, the tidal forces do not generate 
much heat in the Moon now. 
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For the moons of Jupiter, it could be 
expected that the tidal forces do not generate 
much heat since they all have reached the 
equilibrium position. However, these four 
large moons perturb each other motion so 
that the tidal bulges oscillates around the 
equilibrium position. This oscillation 
generates much heat. So much heat is 
generated in Io, the moon closest to Jupiter 
(on which the largest tidal forces are 
exerted), that there are volcanoes on its 
surface. 
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Kepler’s Second Law 
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Mechanical Energy of an Object on an Elliptical Orbit 
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Magnitude of the Gravitational Field of a Point Mass of Mass M 
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Tidal Force 
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Use the following data for these exercises. 
 
Earth   Mass = 5.98 x 1024 kg 

Radius = 6380 km 
Semi-major axis of the orbit (a) = 1 UA = 149 600 000 km 
Eccentricity of the orbit = 0.01671 

 
Moon   Mass = 7.35 x 1022 kg 

Radius = 1738 km 
Distance between the Earth and the Moon = 384 400 km 

 
 
Sun   Mass = 1.9885 x 1030 kg 
 
 
 
E1.1 Trajectories Near a Massive Object  
 

1. At its closest point to the Sun, an object has a speed of 70 km/s. At this instant, the 
distance between the object and the Sun is 50 million km. 
 
a) What is the eccentricity of its orbit? 
b) Is the orbit circular, elliptic, parabolic or hyperbolic? 
c) How far from the Sun will the object be when the angle is 90 degrees from its 

position of closest proximity to the central mass? 
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E1.2 Circular Orbits 
 

Two planets are in a circular orbit around a star. The radius of the orbit of planet 
X is 3 times larger than the radius of planet 
Y. In 5 years, planet X has travelled a 
quarter of its orbit around the star (change 
between the diagrams a and b). From what 
angle has the planet Y moved during that 
time? 
 

www.chegg.com/homework-help/questions-and-answers/two-planets-x-y-travel-
counterclockwise-circular-orbits-star-shown-figure--radii-orbits-ra-q900222 

 
 

E1.3 Elliptical Orbits 
 

2. What is the distance between the Earth and the Sun at perihelion? 
 

3. What is the distance between the Earth and the Sun at aphelion? 
 

4. What is the speed of the Earth at perihelion? 
 

5. What is the speed of the Earth at aphelion? 
 

6. What is the period of revolution of the Earth around the Sun? 
 

7. What is the mechanical energy of the Earth on its orbit? 
 

8. What is the angular momentum of the Earth on its orbit? 
 

9. At some point on its orbit, the Earth 
is at a distance of 150 000 000 km 
from the Sun. 

 
a) What is the speed of the Earth? 

 
b) What is the angle θ in the 

diagram? 
 

c) What is the angle between the 
speed of the Earth and the line 
going from the Earth to the Sun 
(ψ in the diagram)? 

 
 

la.climatologie.free.fr/atmosphere/atmosphere1.htm 
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10. The newly created Quebec space agency’s goal is to increase the international 
influence of Quebec by organizing the first mission with astronauts to Jupiter. 
Since the budget is somewhat limited, they decide to hire college students to 
calculate the best path to get to Jupiter. They’re looking for the path that will take 
the least possible time. 
 
In fact, they hesitate between two possibilities: 
 

1) Give the ship an elliptical trajectory that will move the ship from the Earth 
to Jupiter. This orbit has its perihelion at a distance equal to the radius of 
the orbit of the Earth and its aphelion at a distance corresponding to the 
radius of the orbit of Jupiter. 

2) Give the ship an elliptical path that will take it first to Venus and then 
change its speed to give it a new elliptical orbit that will take it up to 
Jupiter. In the case of the first orbit to Venus, the aphelion is equal to the 
radius of the orbit of the Earth and the perihelion is equal to the radius of 
the orbit of Venus. For the second orbit, the perihelion is still equal to the 
radius of the orbit of Venus but the aphelion is equal to the radius of the 
orbit of Jupiter. 

 
Of course, the second path is longer but it is travelled at a higher speed. So, it is 
unclear which of the two trajectories takes the least time. Find the time required 
to reach Jupiter by following these two paths knowing that the radius of the orbit 
of Jupiter is 7.8 x 1011 m and the radius of the orbit of Venus is 1 x 1011 m. 

 
 

An object is launched tangentially from the surface of the 
Earth with a speed equal to 85% of its escape velocity. 
What will be the maximum distance between the Earth and 
the object? 
 

 
cnx.org/contents/59891349-7823-4303-8e80-672146b479cb%404/projectile-motion 

 
 

11. A comet orbiting the Sun has a period of 50 years. The eccentricity of the orbit is 
0.87. How long does take for the comet to travel from the point 1 to point 2 in its 
orbit? (Hint: this time is 
calculated with the grey area. In 
addition, the dimensions of the 
ellipse on the following diagram 
are c = ae and b = a√1 � e2, and 
the area of an ellipse is 
A = πa²√1 � e2.) 

 
 

cseligman.com/text/history/kepler2.htm 
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12. A small moon revolves around a planet. The maximum speed of the moon is of 
2.2 km/s, and the minimum speed is 1.7 km/s. The period of the moon around the 
planet period is 25 days. 

 
a) What is the semi-major axis (a) of the orbit of the moon? 
b) What is the mass of the planet? 
c) What is the eccentricity of the orbit of the moon? 

 
 
E1.4 Parabolic Trajectories 
 

13. An asteroid following a parabolic trajectory is 50 million km from the Sun when 
it is at its point of closest proximity from the Sun.  
 
a) What is the speed of the asteroid at its closest point to the Sun? 
b) What will be the speed of the asteroid when it will be 200 million km from the 

Sun? 
 
 
E1.5 Hyperbolic Trajectories 
 

14. An asteroid following a hyperbolic trajectory is 50 million km from the Sun when 
it is at its point of closest proximity from the Sun. The eccentricity is 1.2. 
 
a) What is the speed of the asteroid at its closest point to the Sun? 
b) What will be the speed of the asteroid when it will be 200 million km from the 

Sun? 
 
 
E1.6 Summary of Possible Trajectories 
 

15. A comet is 100 000 000 km from the Earth. Then, its speed is 100 m/s and the 
angle between its speed and its distance 
is barely 0.5 °. (For this problem, we’ll 
assume that there is nothing but the Earth 
and the comet in the universe.) 
 
a) Is this comet on an elliptical, 

parabolic or hyperbolic orbit? 
b) Will this comet strike the Earth? (To 

find out, calculate the value of rp. If 
rp is smaller than the radius of the 
Earth, the comet hits the Earth.) 

c) What is the eccentricity of the orbit of 
the comet? 
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E1.8 Gravitational Field 
 

16. What is the gravitational field 100 km above Earth’s surface? 
 
17. What is the gravitational field 1000 km beneath the Earth’s surface if the density 

of the Earth is considered to be constant? 
 

18. A 70 kg person is on the surface of the Moon. 
 

a) What is the gravitational field at the surface of the Moon? 
b) What would be the weight of the person on the surface of the Moon? 
c) This weight represents what percentage of the weight of the person on Earth? 

 
19. How far from the Earth does the gravitational field vanishes between the Earth and 

the Moon? 
 

20. What is the magnitude of the gravitational 
field at the position shown in the diagram?  

 
 
 
 
 
 
 
 
 

 
21. a) What is the force exerted by the Earth on the Moon? 

b) What is the force exerted by the Moon on the Earth? 
 
 
E1.9 Tides 
 

22. Calculate the exact ratio between the magnitude of tidal forces exerted by the 
Moon on Earth and the magnitude of tidal forces exerted by the Sun on Earth? 

 
23. What should be the distance between the Earth and the Moon for the tidal force 

exerted by the Moon on your body to be equal to 1% of your weight? 
 

24. How far from the Sun must Mercury approach to be destroyed by the Sun’s tidal 
forces? (Density of the Sun = 1408 kg/m³, density of Mercury = 5427 kg/m³, radius 
of the Sun = 695 000 km.) Knowing that the smallest distance between Mercury 
and the Sun is 46 000 000 km, can we say that Mercury is in danger? 
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Challenges 
(Questions more difficult than the exam questions.) 
 
 

25. Three planets that are attracting each other with the 
gravitational force are following a circular path as 
shown. What is the period of revolution of these 
planets? The mass of each planet is 1024 kg and the 
radius of the circular path is 10 000 000 km. 

 
 

 
 

26. An object is launched with a 45° angle from the 
surface of the Earth with a speed equal to 85% of its 
escape velocity. 
 
a) What will be the maximum distance between the 

Earth and the object? 
 

b) At what distance from the starting point will the 
object fall back on Earth (in other words, the range 
is sought)? 

 
cnx.org/contents/59891349-7823-4303-8e80-672146b479cb%404/projectile-motion 

 
 

 
E1.1 Trajectories Near a Massive Object 
 

1. a) 0.8355     b) elliptic     c) 91.77 million km 
 
E1.2 Circular Orbits 
 

2. 467.7° 
 
E1.3 Elliptical Orbits 
 

3. 147 000 000 km 
4. 152 100 000 km 
5. 30.286 km/s 
6. 29.291 km/s 
7. 365.26 days 
8. -2.652 x 1033 J 
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9. 2.664 x 1040 kg m²/s 
10. a) 29.705 km/s     b) 100.2°     c) 89.0° or 91.0° 
11. path 1:997.9 days   path 2:1057.7 days 
12. 10,231 km 
13. 11.15 years 
14. a) 1 196 691 km     b) 6.706 x 1025 kg     c) 0.1282 

 
E1.4 Parabolic Trajectories 
 

15. a) 73.03 km/s     b) 36.53 km/s 
 
E1.5 Hyperbolic Trajectories 
 

16. a) 76.64 km/s          b) 36.63 km/s 
 
E1.6 Summary of Possible Trajectories 
 

17. a) hyperbolic     b) No (It passes 9540 km from the centre of the Earth) 
c) 1.0000482 

 
E1.8 Gravitational Field 
 

18. 9.50 N/kg 
19. 8.27 N/kg 
20. a) 1.624 N/kg          b) 113.7 N          c) 16.6% 
21. 346 040 km from the centre of the Earth 
22. 2,432 x 10-3 N/kg 
23. a) 1.985 x 1020 N     b) 1.985 x 1020 N 

 
E1.9 Tides 
 

24. Tidal forces exerted by the Moon are 2.18 times greater than those exerted by the 
Sun. 

25. 8612 km (distance between the centres of the planets, there would, therefore, be 
only 494 km between the surfaces of the planets!) 

26. 1 074 743 km 
 
Challenges 
 

27. 32.07 years 
28. a) 14 013 km     b) 15 364 km 

 


