
 
 

 

Alphonse and Bertrand are involved in a car race. Initially, their cars are at 

rest at the starting line. Alphonse’s car has an acceleration of 5 m/s² until it 

reaches a maximum velocity of 30 m/s. Bertrand’s car has a 3 m/s² 

acceleration until it reaches a maximum velocity of 42 m/s. Where and when 

will Bertrand’s car overtake Alphonse’s car? 

 

 

 
www.dragracingonline.com/raceresults/2008/x_7-spectacular-3.html 

 

 

Discover the answer to this question in this chapter.   
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Kinematics is a branch of physics that describes the motion of objects. To achieve this, the 

position as a function of time can be given with a formula such as x = (3 +2t – t²) m, for 

example. 

 

There are actually many ways to describe a motion. As an example, a formula for the 

velocity as a function of time or as a function of position can be given. A graph of the 

position or velocity as a function of time can be provided instead. The following graph 

shows the position as a function of time for the formula given above. 

 

 
 

Kinematics is one of the oldest branches of physics since the equations used to describe 

the motion of an object with a constant acceleration are known since the 14th century. 

 

 

 

In this chapter, one-dimensional motion (i.e., a motion of objects along a straight line) is 

examined. To give the position along a line, an axis is used. 
 

 
 

The x values increase towards the right but an x-axis with values increasing towards the 

left can also be used. The axis may have any orientation. For example, a vertical axis is 

used to describe a free-fall motion. Then, the position values may increase upwards or 
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downwards depending on your choice of orientation. In this case, y can be used to note the 

position, even though it would be quite 

correct to continue to use x. 

 

The axis could also be tilted to describe the 

position of an object moving along an 

incline. 

 

It simply remains to decide where the 

origin x = 0 is. Very often, the origin 

x = 0 is set at the initial position of the 

object. 

 

The displacement of an object is simply the change in position of the object. If an object 

is initially at position x� and is later at position x�, then the displacement is 

  

Displacement 

2 1x x x∆ = −  

 

 

The distance travelled by an object is the total length of the path travelled between two 

positions. Thus, if an object is thrown upwards to a height of 20 m and then returns to the 

ground, the distance travelled by the object is 40 m while the displacement is zero since 

the object returned to its starting position. To calculate the displacement, only the initial 

and final positions matter. Whatever happened between these two moments is irrelevant. 

This distance is often denoted ∆s (or ∆x when it is identical to the displacement). 

 

 

 

Definition of Average Velocity 

 

Average velocity is defined by the displacement divided by the time elapsed during this 

displacement. 

 

Average Velocity 

x
v

t

∆
=

∆
 

 

This must not be confused with the average speed, which is 
 

Average speed
s

t

∆
=

∆
 

 

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  1-Kinematics 4 

 

Example 1.3.1 
 

An object moves on the x-axis. It first goes from x = 0 m to x = 50 m in 5 seconds and then 

goes from x = 50 m to x = -10 m in 15 seconds. 

 

a) What is the displacement of the object? 

 

The displacement is 
 

2 1

10 0

10

x x x

m m

m

∆ = −

= − −

= −
 

 
b) What is the distance travelled by the object? 

 

The object has travelled 50 m to the right and then 60 m to the left. Therefore, 

∆s = 110 m. 

 
 

c) What is the average velocity of the object? 

 

The average velocity is 
 

10

20

0.5 m
s

x
v

t

m

s

∆
=

∆

−
=

= −

 

 
d) What is the average speed of the object? 

 

The average speed is 
 

average speed

110

20

5.5 m
s

s

t

m

s

∆
=

∆

=

=

 

 
Example 1.3.2 
 

Conrad travels from Quebec to Montreal by car. He travels the 250 km distance with an 

average velocity of 100 km/h for the first 125 km, and then the last 125 km with an average 

velocity of 80 km/h. What is his average velocity? 
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It is tempting to say 90 km/h, but this is not the right answer. Let’s do this properly by 

calculating 

x
v

t

∆
=

∆
 

 

Thus, the total displacement and the total duration of the journey must be found. 

 

It’s easy to calculate the total displacement. 
 

125 125

250

x km km

km

∆ = +

=
 

 

However, a bit of calculation is needed to obtain the time taken by Conrad to go from 

Quebec to Montreal. By taking the equation for the average velocity for the first part 

of the trip, the duration of this part is 
 

1
1

1

1

1

125
100

1.25

km
h

x
v

t

km

t

t h

∆
=

∆

=
∆

∆ =

 

 

Using the same equation, the second part lasts 
 

2
2

2

2

2

125
80

1.5625

km
h

x
v

t

km

t

t h

∆
=

∆

=
∆

∆ =

 

 

Therefore, the total duration of the trip is 
 

1.25 1.5625

2.8125

t h h

h

∆ = +

=
 

 

Therefore, average velocity is 
 

250

2.8125

88.89 km
h

x
v

t

km

h

∆
=

∆

=

=

 

 

The previous two examples show that m/s and km/h can both be used as units for speed 

and velocity. In fact, several units are possible, provided that it is always a unit of distance  
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divided by a unit of time. Thus, mm/day would be quite acceptable as a unit of velocity. 

 

But how do you go from one unit to another? Here’s the conversion technic to change km/h 

in m/s. 

45 45km
h

km
=

1000

1

m

h km
×

1
12.5

3600
m
s

h

s
× =  

 

The first multiplication changes the km in m. This multiplication is actually 1 since 1000 m 

and 1 km are the same distances. The km are at the bottom of the division to eliminate the 

km from the starting unit. The second multiplication changes the h in s. Again, this 

multiplication is 1 since 1 h and 3600 s are the same times. Now, the h are at the top of the 

fraction to eliminate the h from the starting unit. Note that, with the units cancelling each 

other, only m/s remains. 

 

Example 1.3.3 

 

The position of an object is given by the formula 2

²
3 2 1m m

s s
x m t t= + ⋅ − ⋅ . What is the 

average velocity between t = 0 s and t = 1 s? 

 

The average velocity is 
 

x
v

t

∆
=

∆
 

 

The positions at t = 0 s and t = 1 s must be found to calculate ∆x. 

 

At t = 0 s, the position is 
 

( )
2

1 ²
3 2 0 1 0

3

m m
s s

x m s s

m

= + ⋅ − ⋅

=
 

 

At t = 1 s, the position is 
 

( )
2

2 ²
3 2 1 1 1

4

m m
s s

x m s s

m

= + ⋅ − ⋅

=
 

 

Therefore, average velocity is 
 

2 1

4 3

1

1 m
s

x
v

t

x x

t

m m

s

∆
=

∆

−
=

∆

−
=

=
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Average Velocity on the Graph of Position 
 

On a position-versus-time graph, the average velocity 
 

x
v

t

∆
=

∆
 

 

is the slope of the line 

connecting the points 

corresponding to the times 

between which the average 

velocity is sought. Let’s use 

the data from the last 

example to illustrate this. 

 

As the average velocity 

between t = 0 s and t = 1 s is 

sought, the points for the 

position at these times must be used on the graph. Those points are (0,3) and (1,4). The 

average velocity is the slope of the straight line connecting these two points. 

 

 

 
 

Definition of Instantaneous Velocity 

 

Throughout a motion, the velocity may vary. In a previous example, the average velocity 

was 88.89 km/h but the velocity changed during the journey. It is also possible to go to 

Montreal by having a continuously varying velocity, e.g. an always-increasing velocity. 

But then, how can the velocity at a particular instant of time be known? 

 

To achieve this, the velocity is calculated in the same way as the average velocity is 

calculated but by considering the displacement during a very short time, so that the velocity 

does not have any time to change. But what time duration is sufficiently small? Is a second 

short enough? For a car, this may seem correct at first. But the velocity of a car may change 

very quickly during an intense braking and even faster in an accident. Therefore, an even 

shorter time should be used. Perhaps a billionth of a second will do? For a car, it’s probably 

good enough, but it’s probably too long for particles, like electrons, whose velocity can 

change very quickly. How short is short enough? 

 

In fact, there is no need to search for this very small time that could adapt to any situation 

since this very short time already exists in mathematics: it is an infinitesimally small time 

period. Using this value, instantaneous velocity is 
 

0
lim

t

x
v

t∆ →

∆
=

∆
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which is 

 

Instantaneous Velocity 

 

dx
v

dt
=  

 

For simplicity, we always mean “instantaneous velocity” when we talk about velocity. 

 

Example 1.4.1 
 

The position of an object is given by the formula 2

²
3 2 1m m

s s
x m t t= + ⋅ − ⋅ . What is the 

velocity at t = 2 s? 

 

Since velocity is the derivative of position, the velocity is 
 

( )2

²

²

3 2 1

2 2

m m
s s

m m
s s

dx
v

dt

d m t t

dt

t

=

+ ⋅ − ⋅
=

= − ⋅

 

 

Therefore, the velocity at t = 2 s is 
 

²
2 2 2

2

m m
s s

m
s

v s= − ⋅

= −
 

 

 

Speed 

 

Speed is the magnitude of the velocity. In one dimension, this means that speed is simply 

the absolute value of velocity. 
 

speed v=  

 

 

Instantaneous Velocity on the Graph of Position 

 

Instantaneous velocity is the derivative of position. As the derivative is the slope, we arrive 

at the following conclusion.  
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On a graph of the position of an 

object as a function of time, the slope 

is the velocity of the object. 
 

 
 
 
 

control.com/textbook/calculus/how-derivatives-and-integrals-

relate-to-one-another/ 

 
 

Here is the graphical 

representation of the previous 

example. The velocity is the 

slope of the tangent line at this 

instant. 
 

 

 

 

 

 

 

 

 

 

Displacement on the Graph of Velocity 
 

The displacement of an object can be found from the velocity of an object. Since 
 

x
v

t

∆
=

∆
 

 

where ∆t is very small, the displacement during a small time ∆t can be calculated. This 

displacement is 
 

x v t∆ = ∆  
 

On a graph, v∆t is the area of a very thin 

rectangle, as on the graph to the right. 

 

The area of this small rectangle is only the 

displacement during a small time interval ∆t. If 

the total displacement between time t1 and  t2 

time is sought, then all the small displacement, so 

all the areas of the small rectangles between these two times, must be added. 
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The sum of the areas of all these rectangles gives 

the area under the curve. (The area doesn’t look 

exactly the same since there are small bits of 

rectangles that protrude or are missing, but these 

little parts are not actually there since the 

rectangles are very very thin.) 

 

 

 

 

On a graph of the velocity of an object as a 

function of time, the area under the curve 

is equal to the displacement. 

 

 

 

 

Caution: when the area is under the time axis, the area is 

negative. 

 

 

 

 

 

 

Example 1.4.1 
 

Here is the velocity-versus-time graph 

of an object. What is the displacement 

between t = 0 s and t = 40 s? 

 

 

To find the displacement, the area 

under the curve is calculated 

between t = 0 s and t = 40 s.  

 

To achieve this, the area is divided 

into several parts.  

 

First, there is a triangle (in green). 

The area is 300 m. 

 

Then, there is a rectangle (in red). 

The area is 300 m. 
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Then there is a triangle (in blue). The area is 450 m. 

 

Finally, there is another triangle (in yellow). The area is 200 m. 

 

(We stop there because we were asked to find the displacement between 0 s and 40 s.) 

 

The total displacement is then 300 m + 300 m + 450 m – 200 m = 850 m. 

 

The last value is negative because the area is under the time axis. It makes sense to 

have then a negative displacement since the velocity is negative during that time. 

 

Note that if all the areas are taken as being positive even when they are under the time 

axis, the distance travelled by the object is obtained. 

 

 

 

Equation of Motion 

 

Let’s consider what happens at a constant velocity. As it is known that 
 

dx
v

dt
=  

 

the position as a function of time can be found by wondering what should have been derived 

to obtain the constant v. Obviously, it is 
 

x vt cst= +  
 

The value of the constant can be found by setting that the position at t = 0 s is the initial 

position (written as x�). Using this information, the equation becomes 
 

0 0x v cst= ⋅ +  
 

which means that cst =  x� . The position is then 
 

Equation of Motion at Constant Velocity 
 

0x x vt= +  

 

 

This equation can also be obtained with a graph. For 

a constant-speed motion, the velocity graph is a 

horizontal line. 

 

The displacement between t = 0 and time t is given by 

the area shown on the figure on the right. 
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As the area is the area of a rectangle, it is 
 

0

0

x vt

x x vt

x x vt

∆ =

− =

= +

 

 

This is the same equation as the one obtained previously. 

 

Note that with this equation, we have 
 

0

0

0

x vt x

vt x x

x x
v

t

x
v

t

+ =

= −

−
=

∆
=

 

 

which is the same formula as the formula for the average velocity. When the velocity is 

constant, this velocity is equal to the average velocity. 

 

Example 1.5.1 

 

How long does it take to travel 200 km at a steady velocity of 80 km/h? 

 

Using x0 = 0 km and x = 200 km, the time duration is found with 
 

0

200 0 80

200

80

2.5

km
h

km
h

x x vt

km km t

km
t

t h

= +

= + ⋅

=

=

 

 

Note that in this formula x� is always the position at t = 0 and x is always the position at 

time t. 

 

 

When Will Two Objects Be at the Same Place? 
 

Sometimes, the moment when two objects are at the same position is sought. This could be 

because we want to find when two objects collide or when an object catches up with another 

object. The trick to solve this kind of problem is very simple: when an object catches up 

with another or when there is a collision, the two objects are at the same place, which means 

that the equation x� = x� must be solved. 
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Note that graphically, this amounts to find 

the point of intersection of the straight lines 

of the position as a function of time of the 

two objects. 

 

Let’s see what this means for objects 

having a constant velocity. The two objects 

are at a distance L from each other and 

move at different velocities. They will be at 

the same place when x1 = x2. 

 

 
fr.depositphotos.com/2577683/stock-illustration-Car.html 

 

Object 1 position’s is 
 

1 10x v t= +  

 

(The origin x = 0 was set at the initial position of object 1.) Object 2 position’s (which is 

always the one what the largest value of x) is 
 

2 2x L v t= +  

 

When the two objects meet, they are at the same location. This means that 
 

( )

1 2

1 2

1 2

x x

v t L v t

v v t L

=

= +

− =

 

 

which gives 
 

Moment When Two Objects, Initially at a Distance L from Each Other, Are at the 

Same Place if they Move at Constant Velocities. 
 

1 2

L
t

v v
=

−
 

 

 

Example 1.5.2 
 

A French plane and an American plane are heading towards each other. The speed of the 

French aircraft is 2500 km/h and the speed of the American aircraft is 2000 km/h. When 

they are 6000 m apart, the French plane sends a missile towards the American plane. 
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How long will it take for the missile to arrive at the American plane if the speed of the 

missile is 7000 km/h? 

 

The American aircraft is object 1 and as the missile is object 2. Thus 
 

1

2

2000

7000

km
h

km
h

v

v

=

= −
 

 

In metres per second, these velocities are 
 

1

2

555.6

1944.4

m
s

m
s

v

v

=

= −
 

 

Therefore, the time is 
 

1 2

 

6000

555.6 1944.4

2.4

m m
s s

L
t

v v

m

s

=
−

=
− −

=

 

 

 

What if the Velocity Changes? 

 

Even if the velocity of an object changes, it is possible to solve the problem with the 

equations of motion at constant velocity if the velocity changes by step. This means that 

the velocity is constant for a while and then suddenly changes to another constant value. 

There can be as many changes as one wants. 

 

In this case, the problem must be divided into parts. The first part is the motion with the 

constant velocity there is at the outset of the motion, the second part is the one with the 

second constant velocity and so on… The values of the position at the end of the first part 

then become the initial position for the second part. 

 

Example 1.5.3 
 

A car is going at 35 m/s for 200 seconds, and then at 20 m/s for 100 seconds. What is the 

displacement of the car during these 300 seconds?   

 

As the velocity changes, the problem must be divided into two parts with a constant 

velocity. In the first part, the car is travelling at 35 m/s for 200 s. Let the starting 
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position be the origin of the axis so that x� = 0 m. The position at the end of this first 

part is 

0

0 35 200

7000

m
s

x x vt

m s

m

= +

= + ⋅

=

 

 

In the second part, the car moves at 20 m/s for 100 seconds and the initial position is 

the final position of the first part (x� = 7000 m). The position at the end of this phase 

is 

0

7000 20 100

9000

m
s

x x vt

m s

m

= +

= + .

=

 

 

The displacement of the car is then 
 

9000 0

9000

x m m

m

∆ = −

=
 

 

 

 

Average Acceleration 

 

Acceleration indicates if the velocity of an object changes. It specifies by how much the 

velocity changes during each unit of time. Average acceleration is defined by 
 

Average Acceleration 

v
a

t

∆
=

∆
 

 

The SI unit for acceleration is 
m

s

s
, which can be written as m/s².  

An average acceleration of 3 m/s² means that, on average, the velocity increases by 3 m/s 

each second. 

 

Example 1.6.1
  

Here’s the velocity of an object at two instants. 

 

  At t = 0 s, v = 0 m/s. 

  At t = 2 s, v = 10 m/s towards the right. 

 

What is its average acceleration between these two instants? 

 

The average acceleration is 
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²

10 0

2

5

m m
s s

m
s

v
a

t

s

∆
=

∆

−
=

=

 

 

The following example shows that we need to pay attention to the sign of the velocity when 

calculating the average acceleration. 

 

Example 1.6.2 
 

Here is the velocity of an object at two instants. 

 

  At t = 0 s, v = 10 m/s towards the left. 

  At t = 20 s, v = 50 m/s towards the left. 

 

What is its average acceleration between these two instants? 

 

The average acceleration is 
 

²

50 10

20

2

m m
s s

m
s

v
a

t

s

∆
=

∆

− − −
=

= −

 

 

In this last example, the velocities are negative since the object is moving towards the left. 

(This implies that an axis directed towards the right was used.) In fact, you can decide, for 

every problem, the direction of the axis (the positive direction). If the velocity is in this 

direction, it is positive, and if it is in the opposite direction, it is negative. 

 

This last example also shows that a negative acceleration does not necessarily mean that 

the speed of the object decreases (remember that the speed is the magnitude of the velocity). 

In the last example, the acceleration was negative and yet the speed changed from 10 m/s 

to 50 m/s. The following rule is the correct one: 

 

 

If the velocity and the acceleration have identical signs, then the speed increases. 

 

If the velocity and the acceleration have opposite signs, then the speed decreases. 

 

 

To understand this rule, do not forget that acceleration is the velocity that is added at every 

unit of time. Thus, if an object has a velocity of -100 m/s and an acceleration of 5 m/s², 

then 5 m/s is added to the velocity every second. The velocity at different times is therefore 
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  t = 0 s, v = -100 m/s 

t = 1 s, v = -95 m/s 

t = 2 s, v = -90 m/s 

t = 3 s, v = -85 m/s 

t = 4 s, v = -80 m/s 

 

and so on. It is obvious that the speed decreases. According to the rules given above, this 

is what happens when the velocity and the acceleration have opposite signs. 

 

 

Average Acceleration on the Graph of Velocity 

 

On a graph of velocity as a function of time, the average acceleration 
 

v
a

t

∆
=

∆
 

 

represents the slope of the line that 

connects the points that correspond to the 

times between which we want to know the 

average acceleration. For example, if the 

velocity changes as shown on this graph, 

then the average acceleration between 4 s 

and 8 s is 5 m/s². 

www.phyley.com/average-acceleration 

 

Instantaneous Acceleration
  

Remember that average acceleration is an average value. Sometimes the velocity could 

increase quickly and sometimes it could increase more slowly. This is the case with a car 

when it starts moving from rest: its velocity increases rapidly at first and more slowly 

thereafter. An instantaneous acceleration can then be defined to provide information on the 

rate of change of velocity at a specific instant of time. The trick is the same as the one used 

for the instantaneous velocity: this acceleration must be calculated using the change of 

velocity during a very short time so that it has no time to change. Instantaneous acceleration 

is then 

 
0

lim
t

v
a

t∆ →

∆
=

∆
 

which is 

 

Instantaneous Acceleration 

dv
a

dt
=  

  

From now on, we mean “instantaneous acceleration” when we simply talk about 

acceleration. 
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Example 1.6.3 
 

The position of an object is given by the formula 2 3

² ³
3 1 2 1m m m

s s s
x m t t t= − ⋅ + ⋅ + ⋅ . What is 

its acceleration at t = 2 s? 

 

Acceleration is the derivative of velocity. Let’s start by finding the velocity formula, 

which is the derivative of the formula for the position. 
 

( )2 3

² ³

2

² ³

3 1 2 1

1 4 3

m m m
s s s

m m m
s s s

dx
v

dt

d m t t t

dt

t t

=

− ⋅ + ⋅ + ⋅
=

= − + ⋅ + ⋅

 

 

The acceleration can then be found by deriving this velocity. 
 

( )2

² ³

² ³

1 4 3

4 6

m m m
s s s

m m
s s

dv
a

dt

d t t

dt

t

=

− + ⋅ + ⋅
=

= + ⋅

 

 

At t = 2 s, we have 
 

² ³

²

4 6 2

16

m m
s s

m
s

a s= + ⋅

=  

 

 

Instantaneous Acceleration on a Graph of the Velocity 

 

Since acceleration is the derivative of velocity, the acceleration is the slope on a velocity-

versus-time graph. 

 

 

 

 

 

On a graph of the velocity of an object as a 

function of time, the slope is the acceleration 

of the object. 
 

 

 
control.com/textbook/calculus/how-derivatives-and-integrals-

relate-to-one-another/ 
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Using the data from the 

previous example, we see that 

the slope of the tangent line at 

t = 2 s is 16 m/s². 

                          2

² ³
1 4 3m m m

s s s
v t t= − + ⋅ + ⋅  

 

 

 

 

 

 

 

 

 

Example 1.6.4 
 

Here is the velocity-versus-time graph of 

an object. What is the acceleration of the 

object at t = 20 s? 

 

 

 

To find the acceleration, we must 

calculate the slope at t = 20 s. We 

will take the points (15 s, 60 m/s) and (30 s, 0 m/s) (2 points taken at random on the 

slope) to calculate the slope. 
 

2

0 60

30 15

4

m m
s s

m

s

a
s s

−
=

−

= −

 

 

 
Variation of Velocity on the Graph of Acceleration 
 

The change of velocity of an object can be found from the acceleration of an object. Since 
 

v
a

t

∆
=

∆
 

 

where ∆t is very small, the change of velocity during a small time ∆t can be calculated. 

This change of velocity is 
 

v a t∆ = ∆  
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On a graph, a∆t is the area of a very thin 

rectangle, as on the graph to the right. 

 

The area of this small rectangle is only 

the change of velocity during a small 

time interval ∆t. If the total change of 

velocity between time t1 and  t2 time is 

sought, then all the small displacement, 

so all the areas of the small rectangles 

between these two times, must be 

added. The sum of the areas of all these 

rectangles gives the area under the 

curve. 

 

 

 

 

On a graph of the acceleration of an 

object as a function of time, the area 

under the curve is equal to the change of 

velocity. 

 

 

 

 

 

 

Acceleration on the Graph of Position 
 

On a graph of the position as a function of time, the 

sign of acceleration can be easily known. To obtain 

the sign, just look at whether the slope decreases or 

increases with time. 

 

When the slope increases, the velocity increases. The 

acceleration is then positive. 

 

When the slope decreases, the velocity decreases. 

The acceleration is then negative. 
serge.mehl.free.fr/anx/Inflexion.html 

 

It is also possible to get an idea of the acceleration of an object on a position-versus-time 

graph. As acceleration is the derivative of velocity and the latter is the derivative of 

position, acceleration is the second derivative of position. 
 

2

2

d x
a

dt
=  
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Since this second derivative 

represents the concavity on a 

graph, the concavity on a position-

versus-time graph is the 

acceleration of the object. 

Obviously, it is harder to get an 

idea of the exact value of the 

acceleration with concavity, but the 

sign can easily be determined as 

the graph on the right shows. 

 

 

 

 

Variation of Acceleration 
 

It is also possible to have a changing acceleration. The change in acceleration can then be 

measured with the average rate of change of acceleration. This average rate of change is 

the “average jerk”. 
 

2 1a a a
j

t t

− ∆
= =

∆ ∆
 

 

And the instantaneous rate of change is the “instantaneous 

jerk”. 
 

da
j

dt
=  

 

You can now understand jokes like the one on this 

T-shirt, a joke very few people get . 

 

It was also suggested that the rate of change of the jerk is the snap, that the rate of change 

of the snap is the crackle and that the rate of change of the crackle is the pop! 

 

 

 

 

The Equations of Motion 

 

Let’s consider what happens with a constant acceleration. Since 
 

dv
a

dt
=  

www.zazzle.ca/plaisanterie_de_calcul_physi

que_t_shirts-235003554617890293?lang=fr 
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the velocity as a function of time can be found by wondering what must be derived to get 

the constant a. Obviously, it is 
 

v at cst= +  
 

The value of the constant can be found by setting that the velocity at t = 0 s is the initial 

velocity (written as v�). Using this information, the equation is now  
 

0 0v a cst= ⋅ +  
 

This means that cst = v� and that the velocity is then 

 

0v v at= +  

 

This equation can also be obtained with a graph. 

For a constant-acceleration motion, the graph of 

the acceleration is a horizontal line. 

 

As the area is the area of a rectangle, we have 

∆v = at. With this equation, we obtain 
 

0v v at− =  
 

This is the same equation as the one obtained 

previously. 

 

The position as a function of time can also be found with the definition of velocity. 
 

0

dx
v

dt

dx
v at

dt

=

+ =

 

 

The position can be found by searching what must be derived to get v� + ��. Obviously, it 

is 

2

0

1

2
x v t at cst= + +  

 

Again, the value of the constant can be found by setting that the position at t = 0 s is the 

initial position x�. The position equation then becomes 
 

2

0 0

1
0 0

2
x v a cst= ⋅ + ⋅ ⋅ +  

 

The constant is therefore x�. This means that the position equation is 
 

2

0 0

1

2
x x v t at= + +  
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The position as a function of time can also 

be found with the graph of the velocity. As 

the acceleration is constant, the graph of the 

velocity is a graph with a constant slope. 

 

The increase in height on the graph is equal 

to at since this variation is equal to ∆v and 

we know that ∆v = at. 

 

The displacement is equal to the grey area on 

the graph. This area has been divided into two parts: a rectangle and a triangle. The area is 

therefore equal to 
 

0

2

0

area of the rectangle + area of the triangle

1

2

1

2

x

v t t at

v t at

∆ =

= + ⋅

= +

 

 

This is the same equation as the one obtained previously. 

 

With the position and the velocity as a function of time, any problem can be solved. But 

two other equations that are often very useful can also be found. They are not essential but 

they will allow us to solve problems faster. The first one is an equation linking the velocity 

and the position, without resorting to time. Solving for t in the velocity equation 
 

0v v at= +  

 

we obtain 
 

0v v
t

a

−
=  

 

Substituting then into the position equation 
 

2

0 0

1

2
x x v t at= + +  

 

gives 
 

2

0 0
0 0

1

2

v v v v
x x v a

a a

− −   
= + +   

   
 

 

With a little algebra, this equation becomes 
 

2 2 2

0 0 0 0
0

2

2

v v v v v v v
x x

a a

− − +
= + +  
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( )

2 2 2

0 0 0 0
0

2 2 2

0 0 0 0 0

2

2

2 2 2 2

v v v v v v v
x x

a a

a x x v v v v v v v

− − +
− = +

− = − + − +

 

 

( ) 2 2

0 02a x x v v− = −  

 

The other equation gives the position as a function of time without resorting to the 

acceleration. Solving for a in the velocity equation 
 

0v v at= +  

 

we obtain 
 

0v v
a

t

−
=

 
 

Substituting then in the position equation 
 

2

0 0

1

2
x x v t at= + +  

 

gives 
 

20
0 0

1

2

v v
x x v t t

t

− 
= + +  

 
 

 

Simplified, this equation is 

 

( )0 0

1

2
x x v v t= + +  

 

Problem-solving of motion with constant acceleration can then be done with these four 

beautiful equations. 
 

Equations of Motion with Constant Acceleration (also Called Uniformly Accelerated 

Motion) 
 

( )

( )

0

2

0 0

2 2

0 0

0 0

1

2

2

1

2

v v at

x x v t at

a x x v v

x x v v t

= +

= + +

− = −

= + +

 

 

Warning: remember that these four equations are only valid for a motion with constant 

acceleration. Do not use these equations if the acceleration changes… 
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In most cases, problem-solving with constant acceleration is straightforward because one 

of the four equations directly allows you to find the answer you are looking for. Simply 

look at the four equations one after the other, and identify the unknowns in each equation. 

Most of the time, there will be an equation for which the only unknown is the answer you’re 

looking for. 

 

Common Mistake: Wrong Sign for v or a 

Be sure to define clearly a positive direction. If a vector (velocity or 

acceleration) is in the same direction as your positive direction, it is 

positive. Conversely, if a vector (velocity or acceleration) is in the opposite 

direction to your positive direction, it is negative. 

 
Example 1.7.1 
 

A plane goes from 0 m/s to 100 m/s in 8 seconds with a constant acceleration.  

 

a) What is the acceleration of the plane? 

 

This first equation gives us 
 

0

²

100 0 8

12.5

m m
s s

m
s

v v at

a s

a

= +

= + ⋅

=
 

 
b) How far has travelled the plane in 8 seconds? 

 

The second equation gives us 
 

( )

2

0 0

2

²

1

2

1
0 0 8 12.5 8

2

400

m
s

x x v t at

s s

m

= + +

= + ⋅ + ⋅ ⋅

=

 

 

Note that the third or the fourth equations could have been used to solve this part 

of the problem since the only unknown in each of these three equations is the 

position. 

 

Note that in this formula x� and v� are always the position and the velocity at t = 0 while x 

and v are always the position and the velocity at time t. 

 

Example 1.7.2 
 

A car has a speed of 50 m/s and a constant acceleration. 100 m farther away, the speed of 

the car is 60 m/s. How much time did it take for the car to travel these 100 m? 
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The time is found with 
 

( )

( )

0 0

1

2

1
100 0 50 60

2

1.818

m m
s s

x x v v t

m m t

t s

= + +

= + ⋅ + ⋅

=

 

 

 

Example 1.7.3 
 

A Boeing 747 must have a speed of 278 km/h to take off. Knowing that the Boeing’s 

acceleration is 2.8 m/s², how long does the runway have to be for the Boeing to take off? 

 

The length is 
 

( )

( ) ( ) ( )2

2 2

0 0

2 2

2

2 2.8 0 77.22 0

1064.9

m m m
s ss

a x x v v

x m

x m

− = −

⋅ ⋅ − = −

=

 

 
There’s no need to focus more on these rather simple cases. Let’s look at some more 

complex problems which are not directly solved by one equation. 

 

Example 1.7.4 
 

A car passes by a telephone pole with a velocity of 90 km/h and an acceleration of 3 m/s². 

How far from the pole was it 2 seconds earlier? 

 

1st Solution  

 

The velocity at t = 2 s (25 m/s) and the acceleration are known. Let’s put the axis 

origin x = 0 at the pole and try to calculate x�. The unknowns in the four equations 

are 

 

0v v at= +    Unknown: v� 

2

0 0

1

2
x x v t at= + +   Unknowns: v� and x� 

2 2

0 0
2 ( )a x x v v− = −   Unknowns: v� and x� 

( )0 0

1

2
x x v v t= + +   Unknowns: v� and x� 

 

It’s clear that x� is never the only unknown in an equation. On the other hand, a 

solving strategy to this problem can easily be found. v� must be found first with the 
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first equation and then x� can be found with any of the other three equations since 

the only remaining unknown in theses equation will be x�. 

 

According to the first equation, v� is 
 

0

0 ²

0

25 3 2

19

m m
s s

m
s

v v at

v s

v

= +

= + ⋅

=

 

 

The initial position can then be found with the second equation (the third or the 

fourth equation could also have been used). 
 

( )

2

0 0

2

0 ²

0

1

2

1
0 19 2 3 2

2

44

m m
s s

x x v t at

x s s

x m

= + +

= + ⋅ + ⋅ ⋅

= −

 

 

The car was therefore 44 m from the pole 2 seconds earlier. 

 
2nd Solution 

 

This problem can also be solved with a single equation if the time t = 0 s is set at 

the moment the car is by the pole. The problem can then be solved by calculating 

the position of the car at t = -2 s. Still using the x = 0 at the pole, this problem is 

solved directly with the second equation. 
 

( ) ( )

2

0 0

2

²

1

2

1
0 25 2 3 2

2

44

m m
s s

x x v t at

s s

m

= + +

= + ⋅ − + ⋅ ⋅ −

= −

 

 
This last solution shows that x� is not specifically the initial position. Properly speaking, it 

is the position at t = 0 s. As it is possible to have a motion before t = 0 s (which is arbitrary), 

x� is not always the initial position. Similarly, v� is not necessarily the initial velocity. It’s 

simply the velocity at t = 0 s. Obviously, if the motion begins at t = 0 s, x� and v� are indeed 

the initial position and the initial velocity. 

  

 

What if the Acceleration Changes? 

 

It is possible to solve a problem with the equations of motion with constant acceleration if 

the acceleration changes by step, which means that it is constant for a while and then it 
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suddenly changes to another constant value. There can be many changes of acceleration 

like that. 

 

In this case, the problem is divided into parts. The first part is the motion with a constant 

acceleration there is at the outset, the second part is the one with the second constant 

acceleration and so on… The values of position and velocity at the end of the first part 

become the initial values for the second part. By applying the equations of the motion with 

constant acceleration in each part, the conditions of application of these formulas are met 

since the acceleration is indeed constant in each of the parts. 

 

Example 1.7.5 
 

A car initially at rest has an acceleration of 6 m/s² for 5 seconds, and then an acceleration 

of 2 m/s² for 4 seconds and finally an acceleration of -15 m/s² for 2 seconds. What is the 

displacement of the car during these 11 seconds and what is the velocity of the car at the 

end of this motion? 

 

1st Part: a = 6 m/s², x� = 0 m and v� = 0 m/s 

 

The velocity at the end of this part is 
 

0

²
0 6 5

30

m
s

m
s

v v at

s

= +

= + ⋅

=

 

 

The position at the end of this part is 
 

( )

2

0 0

2

²

1

2

1
0 0 5 6 5

2

75

m
s

x x v t at

s s

m

= + +

= + ⋅ + ⋅ ⋅

=

 

 
2nd Part: a = 2 m/s², x� = 75 m and v� = 30 m/s  

 

(Note: the initial values of the position and the velocity of this part are the values at 

the end of the first part.) 

 

The velocity at the end of this part is 
 

0

²
30 2 4

38

m m
s s

m
s

v v at

s

= +

= + ⋅

=

 

 

The position at the end of this part is 
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( )

2

0 0

2

²

1

2

1
75 30 4 2 4

2

211

m m
s s

x x v t at

m s s

m

= + +

= + ⋅ + ⋅ ⋅

=

 

 
3rd Part: a = -15 m/s², x� = 211 m and v� = 38 m/s  

 

The velocity at the end of this part is 
 

( )

0

²
38 15 2

8

m m
s s

m
s

v v at

s

= +

= + − ⋅

=

 

 

The position at the end of this part is 
 

( ) ( )

2

0 0

2

²

1

2

1
211 38 2 15 2

2

257

m m
s s

x x v t at

m s s

m

= + +

= + ⋅ + ⋅ − ⋅

=

 

 

The total displacement is then 
 

2 1

257 0

257

x x x

m m

m

∆ = −

= −

=

 

 

and the final velocity is 8 m/s. 

 

 

When Will Two Objects Be at the Same Place? 

 

As mentioned previously, the problem is solved with the equation x� = x�. Again, this 

means that the points of intersection of the two functions giving the position according to 

the time must be found. If acceleration is constant, we’re actually looking for the point of 

intersection of two parabolas. In this case, there may be 2 points of intersection, 1 point of 

intersection or no point of intersection. 
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Example 1.7.6 
 

Two cars are moving towards each other. The car on the left moves towards the right with 

a velocity of 30 m/s and the car on the right moves towards the left with a velocity of 

20 m/s. When they are 105 m from each other, they start to slow down simultaneously. The 

car to the left slows down at 6 m/s² while the car on the right slows down at 4 m/s². Will 

they hit each other and, if so, where and when? 
 

 
fr.depositphotos.com/2577683/stock-illustration-Car.html 

 

There will be a collision if x� = x�. 

 

For car A (the one on the left), we have x� = 0 m, v� = 30 m/s and a = -6 m/s². Its 

position as a function of time is therefore 
 

( )

2

0 0

2

²

2

²

1

2

1
0 30 6

2

30 3

A

m m
s s

m m
s s

x x v t at

m t t

t t

= + +

= + ⋅ + ⋅ − ⋅

= ⋅ − ⋅

 

 

For car B (the one on the right), we have x� = 105 m, v� = -20 m/s and a = 4 m/s². Its 

position as a function of time is therefore 
 

( )

2

0 0

2

²

2

²

1

2

1
105 20 4

2

105 20 2

B

m m
s s

m m
s s

x x v t at

m t t

m t t

= + +

= + − ⋅ + ⋅ ⋅

= − ⋅ + ⋅

 

 

If the two cars collide, then 
 

2 2

² ²

2

²

30 3 105 20 2

105 50 5 0

A B

m m m m
s s s s

m m
s s

x x

t t m t t

m t t

=

⋅ − ⋅ = − ⋅ + ⋅

− ⋅ + ⋅ =

 

 

This quadratic equation can be solved with 
 

( )
2

²

²

50 50 4 5 105

10

m m m
s s s

m
s

m
t

± − ⋅ ⋅
=  
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50 20

10
t s

±
=  

 

The two solutions are then t = 3 s and t = 7 s. Since there is a solution, there is a 

collision. If there had been no solution, as it sometimes happens with quadratic 

equations, it would have meant that there is no collision. 

 

But then, why are there 2 solutions? Will the cars hit each other twice? Actually, they 

will only hit each other only once, at t = 3 s. The second solution is not good because 

it is clear that the acceleration of the cars will change when they collide. Thus, the 

formulas of the position as a function of time made previously are not valid for t > 3 s 

since the accelerations change at that time. 

 

The location of the collision can be found by using one of the two position formulas. 

This position is 
 

( )

2

²

2

²

30 3

30 3 3 3

63

m m
A s s

m m
s s

x t t

s s

m

= ⋅ − ⋅

= ⋅ − ⋅

=

 

 

(You can check that x� gives the same position.) 

 

The velocity of the two cars when they hit each other can also be found. 
 

( )0 ²
30 6 3 12m m m

A s s s
v v at s= + = + − ⋅ =  

0 ²
20 4 3 8m m m

B s s s
v v at s= + = − + ⋅ = −  

 

 

 

Example 1.7.7 
 

Alphonse and Bertrand are involved in a car race. Initially, their cars are at rest at the 

starting line. Alphonse’s car has an acceleration of 5 m/s² until it reaches a maximum 

velocity of 30 m/s. Bertrand’s car has a 3 m/s² acceleration until it reaches a maximum 

velocity of 42 m/s. Where and when will Bertrand’s car overtake Alphonse’s car? 

 

As the accelerations change in this problem, this problem must be divided into parts. 

 
1st Part: both cars are accelerating 
 

 a� = 5 m/s², a� = 3 m/s² 

 

As this part ends when Alphonse’s car (car A) reaches its maximum velocity, the 

duration of this phase is  
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0

²
30 0 5

6

A

m m m
s s s

v v at

t

t s

= +

= + ⋅

=

 

 

At the end of this part, the positions of the cars are 
 

( )

2

0 0

2

²

1

2

1
0 0 5 6

2

90

A

m
s

x x v t at

s

m

= + +

= + + ⋅ ⋅

=

                       ( )

2

0 0

2

²

1

2

1
0 0 3 6

2

54

B

m
s

x x v t at

s

m

= + +

= + + ⋅ ⋅

=

 

 

and the velocities are 
 

30 m
A s

v =                                

0

²
0 3 6

18

B

m m
s s

m
s

v v at

s

= +

= + ⋅

=

 

 
2nd Part: Car A is at its maximum velocity; car B accelerates on. 
 

a� = 0 m/s², a� = 3 m/s² 
 

(Note: the initial values of the positions and the velocities for this part are the values 

at the end of the first part.) 

 

As this part ends when Bertrand’s car (car B) reaches its maximum velocity, the 

duration of this phase is 
 

0

²
42 18 3

8

B

m m m
s s s

v v at

t

t s

= +

= + ⋅

=

 

 

At the end of this phase, the positions of the cars are 
 

2

0 0

1

2

90 30 8 0

330

A

m
s

x x v t at

m s

m

= + +

= + ⋅ +

=

               ( )

2

0 0

2

²

1

2

1
54 18 8 3 8

2

294

B

m m
s s

x x v t at

m s s

m

= + +

= + ⋅ + ⋅ ⋅

=

 

 

(Car B still has not caught up with car A. Had Bertrand passed Alphonse, we would 

then proceed in the same way as we will do in the third part to find exactly where 

and when Bertrand would have caught up with Alphonse.) 

 

The velocities at the end of the second part are 
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30 m
A s

v =   42 m
B s

v =  
 

 

3rd Part: Both cars are moving at their maximal velocities. 
 

a� = 0 m/s², a� = 0 m/s² 
 

This part never ends. As car B is going faster than car A, it will surely catch it at 

some point. When Bertrand catches up with Alphonse, we have x� = x�. 

 

Positions of the cars as a function of time are 
 

2

0 0

1

2

330 30 0

A

m
s

x x v t at

m t

= + +

= + ⋅ +

               

2

0 0

1

2

294 42 0

B

m
s

x x v t at

m t

= + +

= + ⋅ +

 

 

If they are at the same location, then xA= xB 
 

330 30 294 42

36 12

3

A B

m m
s s

m
s

x x

m t m t

m t

t s

=

+ ⋅ = + ⋅

= ⋅

=

 

 

Therefore, the position is 
 

330 30 3

420

m
A s

x m s

m

= + ⋅

=
 

 

(x� would have given the same answer) and the total time from the start is 
 

6 s + 8s + 3s = 17 s. 
 

(Note: the times must be added since the time starts anew at the beginning of each 

part. However, we directly get the position since we always kept our origin x = 0 m 

at the same place, i.e. at the starting line.) 

 

 

 

How to Obtain the Equations of Motion from the Positions at 
Specific Times 

 

Sometimes, the position of an object at a specific moment has to be found from the 

positions of the object at 3 other times. The following example shows how to solve this 

kind of problem. 
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Example 1.7.8 

 

Here are the positions of an object at three instants in time.  
x = 2 m at t = 1 s 

x = 3 m at t = 2 s 

x = 11 m at t = 4 s 

Where is the object at t = 10 s? 

 

The equation of motion 

2

0 0

1

2
x x v t at= + +  

 

gives these 3 equations at the 3 given times. 
 

( ) ( )

( ) ( )

( ) ( )

2

0 0

2

0 0

2

0 0

1
2 1 1

2

1
3 2 2

2

1
11 4 4

2

m x s v a s

m x s v a s

m x s v a s

= + + ⋅ ⋅

= + + ⋅ ⋅

= + + ⋅ ⋅

 

 

Those give us 3 equations with 3 unknowns. 
 

( ) ( )

( ) ( )

( ) ( )

2

0 0

2

0 0

2

0 0

2 1 0.5

3 2 2

11 4 8

m x s v s a

m x s v s a

m x s v s a

= + +

= + +

= + +

 

 

With three equations and three unknowns, any method can be used to solve this 

system of equations (Gauss-Jordan, for example…). Leaving aside the details of 

this mathematical manipulation, the solution is 
 

x� = 3 m, v� = -2 m/s and a = 2 m/s² 
 

The position at t = 10 s is then 
 

( ) ( )

2

0 0

2

²

1

2

1
3 2 10 2 10

2

83

m m
s s

x x v t at

m s s

m

= + +

= + − ⋅ + ⋅ ⋅

=

 

 

This solution seems short, but it is actually quite long when you have to solve the 

system of equations. It is much easier to solve, however, if one of the positions is 

the position at t = 0. Then, the equation for t = 0 directly gives the value of x�. Then, 

only two equations and two unknowns remain, and v� and a can easily be found 

with them. 
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Gravitational Acceleration 
 

When we talk about free fall, we are talking about an object on which only the gravitational 

force is exerted. This means that there is no friction that acts on the object. Note that an 

object thrown upwards is in free fall during its entire motion (upwards and downwards). 

 

The motion of a free-falling object can be studied by using, for 

example, a strobe to photograph the object at regular intervals 

to easily measure its positions (as on the picture to the right). 

 

With the positions of the object as a function of time, it’s easy 

to conclude that the free-fall motion is a constant acceleration 

motion and that all objects, regardless of their mass, have an 

acceleration of 9.8 m/s² downwards.  

 

 

gravitational ²
9.8 downwardsm

s
a =  

 

 

The symbol g is used to represent the magnitude of this 

acceleration. 

 

²
9.8 m

s
g =  

 

 

 

Mass Does not Matter 
 

It can never be repeated enough: all the objects fall with the 

same acceleration in free fall, no matter their mass. Thus, if 

two objects of different mass are dropped simultaneously from 

rest into vacuum, they will arrive on the ground at the same 

time. 

 

This may sound surprising, but it’s probably because you have 

never seen an object fall in vacuum. To know the effect of 

gravity alone, air friction must be completely eliminated. This 

can be done by dropping objects in a vacuum chamber. In this 

video, a feather and a bowling ball reach the ground at the same 

time when they fall in a vacuum chamber. 

https://physique.merici.ca/mecanique/Chute-vide.wmv 

The demonstration can also be done on the Moon, where there’s no air. Apollo 15 astronaut 

Dave Scott did this experiment in 1971. 

en.wikipedia.org/wiki/Equations_

for_a_falling_body 
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https://www.youtube.com/watch?v=03SPBXALJZI 

However, the objects fall with a lower acceleration on the Moon. The force of gravity being 

weaker on the surface of the Moon, the gravitational acceleration is only 1.6 m/s². 

 

These clips clearly show that the acceleration of objects is the same, regardless of the mass 

of the object, in free fall. 

 

 

How Was it Discovered Free-Fall is a Motion With the Same 
Constant Acceleration? 
 

It took about 2000 years of studies to reach the conclusion that all objects, whatever their 

mass, fall with the same acceleration in vacuum and that they fall with a constant 

acceleration. The problem is that it is very difficult to discover that acceleration is constant 

for falling objects when there is no way to eliminate friction. 

 

 

Effect of Mass 

 

When there is air friction, the 

falling speed varies in the way 

shown on this graph (which 

will see again in Chapter 5). 

 

The graph shows that the 

speed of objects falling in air 

tends towards a maximum 

speed (horizontal dashed line). 

Since this maximum speed 

depends on the mass and the 

shape of the object, the motion of falling objects differs according to their mass and shape. 

This effect can be seen in this clip in which a stove and a pillow are dropped for the same 

height. 

https://www.youtube.com/watch?v=RGVcKYpo9EM 

It is not easy to deduce that mass does not matter from such an observation! 

 

This experiment strongly suggests that more massive objects fall faster than lighter objects. 

Even today, many people will tell you that heavier objects fall faster than light objects, 

which is usually true for a fall in air, but not always (we will see in Chapter 5 that a lighter 

object could fall faster than a heavier object). Thus, it is not surprising to find that almost 

all scholars up to the 17th century, beginning with Aristotle in the 4th century BC, thought 

that more massive objects fall faster than lighter objects. Aristotle even goes so far as to 

say that an object 3 times more massive than another will take three times less time to reach 

the ground if we drop the objects at the same time from the same height. 
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However, a few have found that fall times can be virtually identical for objects made in 

some circumstances even if the masses are very different. This is what can be seen in these 

videos of falling pumpkins. 

https://www.youtube.com/watch?v=gVAJcd4JXyE 

https://www.youtube.com/watch?v=r2-h_bpUSqM 

Philoponus is the first, in the 6th century, to claim that, sometimes, there is practically no 

difference between arrival times when two objects of different mass fall simultaneously 

from the same height.  A few others opposed Aristotle in the next 1000 years, but they were 

not very numerous. 

 

In the 16th century, Giambattista Benedetti was one of those who dared to contradict 

Aristotle. His theories (which were wrong according to current physics) led him to 

conclude, in 1552, that objects of the same density should fall at the same speed in air even 

if they have different masses. He was therefore able to explain why the fall times are 

sometimes different (objects of different densities) and sometimes identical (objects of the 

same density). In 1586, the Dutchman Simon Stevin verified this assertion by dropping 

from the top of a tower about 10 meters high two objects with identical densities, but 

different masses. He then observed that the arrival times are indeed identical (or almost). 

The fact that it took 34 years between the time the idea was formulated and the time a first 

experimental verification was carried out is really telling about the attitude of the scientists 

of the time. There were not many who thought that experimentation was an essential step 

in verifying claims at the time. (Note that the idea that the fall should depend only on 

density had quickly spread in Europe. The long delay is therefore not due to a slow 

diffusion of ideas.) 

 

Galileo will go even further. According to him, the fall in vacuum is identical for all 

objects, even if they have different densities. He begins with a reasoning that shows that 

we arrive at a contradiction if we assume that more massive objects fall faster. Assuming 

that more massive objects fall with a greater acceleration than less massive objects, what 

would happen if a 10 kg object is tied to a 1 kg object? First, it can be inferred that this 

11 kg object should fall with a grater acceleration than the 10 kg object since it is more 

massive. But then, it can also be argued that this 11 kg object should fall with a smaller 

acceleration than the 10 kg object since the 10 kg object has to drag a 1 kg object falling 

with a smaller acceleration! The only way out of this contradiction is to assume that the 

speed of fall is the same for all masses. (Note that the reasoning is valid only if the speed 

of fall depends solely on the mass.) 

 

Galileo could not prove his theory experimentally by dropping objects in vacuum since the 

vacuum pump had not been invented yet. However, Galileo manages to show that there is 

a link between free fall and the movement of pendulums (which is normal since the 

2 phenomena are related to gravitation). He shows that if the fall times are identical for 2 

objects dropped from the same height in vacuum, then the oscillation times of the pendulum 

should be the same if these 2 objects are fixed at the end of strings of the same length. This 

allows for more precise checks than letting objects fall. In a fall, friction quickly becomes 

important, and the fall times are very difficult to measure with great accuracy. With very 

long pendulums and small oscillations, the problem of friction is eliminated because the 
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speed of the object is not very great, and the air friction does not have much effect. The 

periods of oscillation can also be measured much more accurately by measuring the time 

of many oscillations. 

 

The measurements clearly showed that the oscillation times of a pendulum are identical 

when the object at the end of the pendulum is changed, regardless of its mass and 

composition. Newton himself says he did this experiment with many types of materials and 

found that the period was always the same. Newton was so convinced that the times of falls 

were identical in vacuum that he made it one of the starting points of his mechanics in 

1687. In Newton’s mechanics, all objects fall identically in vacuum, regardless of their 

mass. The observation of the first falls in vacuum (coin and feather in a tube) made by 

Boyle in 1660 has surely convinced several others. 

 

But there was still a small doubt. Could it be that the fall is not exactly the same for all 

objects in a vacuum? In fact, they continued to verify that the fall is identical with 

increasingly precise experiments. By 1900, it had been verified that the fall is identical 

with an accuracy of 10-6 %. Today, accuracy reaches 10-13 %. As recently as 2016, the 

Microscope satellite was sent into space to verify the equality of fall. According to 

Einstein’s equivalence principle, there should be no difference at all (this principle is the 

starting point of his theory of general relativity). On the other hand, there may be a small 

difference according to other theories. For example, string theory predicts that gravitation 

could be a little different depending on the composition of the object. 

 

 

Constant Acceleration 

 

The graph of the speed also 

shows that the fall of an object 

in air is not a constant 

acceleration motion (it is clear 

that the acceleration, which is 

the slope, is not constant). It’s 

not easy to discover that 

acceleration is constant when 

it's not really constant! 

 

However, the acceleration is approximately constant at 9.8 m/s² for all objects at the 

beginning of the motion (we can see that the slope is approximately constant at the 

beginning). Then, the speed is small, and the frictional force is not very large compared to 

the weight of the object. The acceleration is therefore approximately constant if the drop 

distance is not too great. 

 

Of course, it is hard to discover that acceleration is constant when nobody know what 

acceleration is. But even after the concept of acceleration was clarified and the formulas of 

constant acceleration motion were obtained in the 14th century, it still took almost 300 years 

before Galileo discovered that acceleration was constant. Why was it so long? 
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Everyone knows back then that the speed increases with the fall. It is said that speed 

increases with fall time or speed increases with fall distance. You don’t have to be a super 

genius to come to that conclusion. Sometimes, in the Middle Ages, some are more precise 

and say that speed is proportional to time (v ∝ t) or proportional to the distance of fall (v ∝ 

y). These two possibilities are quite different. The first corresponds to a constant 

acceleration motion, but not the second (in a constant acceleration motion, we have instead 

v ∝ ��). Very often, they think that both possibilities are true since no one has the 

mathematical tools to understand that these two possibilities are very different. 

 

No one is experimenting and no one thinks it’s relevant to do so. Rather, they try to deduce 

what the motion will be from the theories that explain the cause of the motion (which we 

will see in Chapter 3) and then they do not check if it corresponds to the real motion. It 

must be said that the experiment would not have been easy to do, because they have, at that 

time, only this equation of constant acceleration motion. 
 

( )0

1

2
y v v t= +  

 

Obviously, the equation was not given in this form. Just to give you an idea, here’s how 

Oresme gave this law in the mid-14th century. 
 

Every quality, if it is uniformly difform, is of the same quantity as would be 

the quality of the same or equal subject that is uniform according to the 

degree of the middle point of the same subject. 
 

It is not easy for us to find the formula in this sentence. The problem is that the formula 

only refers to speeds and they didn’t really have a way to measure instantaneous speed at 

that time. 

 

Thus, the idea of a constant acceleration fall (v ∝ t) was already present at least since the 

14th century but it had not been formulated from observations. It was only one possibility 

among others, and it was considered simply because it was a simple solution, just like 

v ∝ y. Most of the time, they accept both possibilities at the same time without 

understanding that there is a contradiction between the two but, sometimes some have 

come to favor one solution over another. For example, Albert of Saxony (14th century) 

thinks that v ∝ y is the right solution while Domingo de Soto (1551) thinks that v ∝ t is the 

right solution. As this motion is a constantly accelerating motion, Domingo de Soto could 

pass for a visionary, but he is not really one. He does not provide any arguments and it is 

not known how he came to prefer this solution. Certainly, it was not an experiment that 

brought him to this law. He has simply come to prefer this law, probably for philosophical 

reasons, in the same way that others have come to prefer v ∝ y. 

 

At the beginning of the 17th century, the issue is still unresolved. Galileo, in his early years 

(around 1590), still accepted v ∝ y and v ∝ t at the same time. However, Galileo changed 

everything a few years later. In 1603-1604, the latter decided to experimentally verify how 

bodies fell. That was really a whole new way of doing things! 
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Galileo will first show that v ∝ y and v ∝ t are completely different motion. Also, he 

manages to show that v ∝ t means that the distance travelled is 
 

y ∝ t2 
 

This law makes it much easier to check whether a falling object is doing a constant 

acceleration motion since it is much easier to measure the distance traveled than the speed 

of a falling object. He finally shows (although the evidence is not so convincing) that if the 

vertical fall is done with a constant acceleration, then a fall along an inclined plane should 

also be a constant acceleration. The lower acceleration on the plane then slows down the 

entire fall process and facilitates the experiment. 

 

The only problem that remains is that Galileo 

had no simple way to measure time. Galileo 

measured it with his pulse, with the amount of 

water flowing from a basin and with small 

obstacles placed on the track that make a small 

noise when the slipping object passes. A 

variant of this method can be seen in the 

picture on the right. This method involves 

placing small bells that are struck by the ball 

rolling along the inclined plane. The position 

of the bells is adjusted so that the ringing is 

done at regular intervals. Galileo ensured the 

regularity of the sounds emitted by singing a 

military march during the experiment. This 

experimental setup can be seen in action in 

this video (filmed at Woolsthorpe Manor, 

birthplace of Isaac Newton). 

https://www.youtube.com/watch?v=eUbv78PHaro 

 

The results of the experiment clearly showed that the distance traveled by the object 

increases with the square of time (y ∝ t2) and that the motion is a constant accelerated 

motion. 

 

Newton dispelled all doubts in 1687. Free fall is automatically a constant-accelerating 

motion in Newton’s theory. In fact, Newton shows that the acceleration is not quite 

constant since the gravitational force decreases a little with altitude. However, the 

acceleration variations are small near the Earth’s surface and the acceleration is virtually 

constant. 

 

 

Free-Fall Examples 
 

Most of the time, solutions to free-fall problems can be quickly obtained by using the 

equations for constant acceleration motion with a downwards acceleration of 9.8 m/s². 
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( )

0

2

0 0

2 2

0 0

1

2

2

v v at

y y v t at

a y y v v

= +

= + +

− = −

 

 

(y is used instead of x because the motion is vertical.) The equation 
 

( )0 0

1

2
y y v v t= + +  

 

is not really useful, because this equation is used when a is not known. However, with free 

fall, we know that the acceleration is 9.8 m/s². 

 
Common Mistake: Wrong Sign for a. 
Acceleration is always downwards in free fall. Some students think that the 

acceleration is upwards when the object goes up and downwards when the 

object goes down. It’s wrong. While going up, the velocity is upwards and 

the acceleration is downwards. As the velocity and the acceleration are in 

opposite directions, the object slows down. While going down, the velocity and the 

acceleration are both downwards. The velocity then increases since that is what happens 

when the acceleration and the velocity are in the same direction. 

 

 

Common Mistake: Thinking that a = 0 at the 

Highest Point. 
The acceleration is always 9.8 m/s² downwards during free fall, including 

at the highest point on the trajectory. At this point, the velocity is zero, but 

not the acceleration. If the acceleration were to be zero, the velocity of the 

object would remain constant. As the velocity at this point is zero, the object would always 

remain stationary at the highest point. 

 

 

Common Mistake: Thinking that v = 0 When the 

Object Hits the Ground. 
If asked to find when an object is going to hit the ground, some students 

use v = 0 at the ground if this problem can be solved with an equation 

involving velocity. It is true that the velocity is zero after the collision with 

the ground but the velocity just before the contact with the ground must be used in the 

equation. As soon as the object touches the ground, the acceleration changes and the 

equations of free fall are no longer valid. 
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Example 1.8.1 
 

An object is thrown upwards from the ground with a velocity of 20 m/s. 

 

a) What is the maximum height reached by the object? 

 

To resolve this problem, an axis directed upwards is used with the origin y = 0 m at 

the ground. 

  

Here a = -9.8 m/s² (it is negative because an upwards axis was chosen and the 

acceleration is downwards), v�= 20 m/s and y� = 0 m. The maximum height is 

reached when the velocity is zero. (The object goes up when the velocity is positive 

and goes down when the velocity is negative. Therefore v = 0 at the highest point.) 

Therefore, y when v = 0 is sought. This problem is solved directly with the following 

equation. 
 

( ) ( ) ( )

2 2

0 0

2

²

2 ( )

2 9.8 0 0 20

20.4

m m
s s

a y y v v

y m

y m

− = −

⋅ − ⋅ − = −

=

 

 

b) How long does it take for the object to reach the maximum height?  

 

This problem is solved with the equation 
 

( )
0

²
0 20 9.8

2.04

m m
s s

v v at

t

t s

= +

= + − ⋅

=

 

 
c) What is the velocity of the object when it hits the ground? 

 

When the object hits the ground, it returns to y = 0. This problem is then solved 

with the equation 
 

( ) ( ) ( )

2 2

0 0

22

²

2 ( )

2 9.8 0 0 20

20

m m
s s

m
s

a y y v v

m m v

v

− = −

⋅ − ⋅ − = −

= ±

 

 

Since we are using an upwards axis and the object is obviously going downwards, 

the velocity is -20 m/s. 

 

Some students solve this problem in two parts: the ascent and the descent. Although 

it is not wrong to do this problem in 2 parts, it is useless since it can be solved in 

one part because the acceleration is always constant in this motion. 
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d) How long does it take for the object to come back to the ground?  

 

This problem is solved directly with the following equation. 
 

( )
0

²
20 20 9.8

4.08

m m m
s s s

v v at

t

t s

= +

− = + − ⋅

=  
 

(Observe that v = 0 was not used for the velocity on the ground. The velocity just 

before the contact with the ground had to be used. 

 
e) What is the displacement between 1 s and 1.5 s after the start of the motion? 

 

To solve this problem, the position at t = 1 s and t = 1.5 s must be known. 

 

At t = 1 s, the position is 

( ) ( )

2

1 0 0

2

²

1

2

1
0 20 1 9.8 1

2

15.1

m m
s s

y y v t at

m s s

m

= + +

= + ⋅ + ⋅ − ⋅

=

 

 

At t = 1.5 s, the position is 

( ) ( )

2

2 0 0

2

²

1

2

1
0 20 1.5 9.8 1.5

2

18.98

m m
s s

y y v t at

m s s

m

= + +

= + ⋅ + ⋅ − ⋅

=

 

 

Thus, the displacement is 
 

18.98 15.1 3.88y m m m∆ = − =  

 
f) When is the object 10 m above ground? 

 

This problem can be solved with 

( )

2

0 0

2

²

1

2

1
10 0 20 9.8

2

0.583    and   3.498    (solutions to a quadratic equation)

m m
s s

y y v t at

m m t t

t s s

= + +

= + ⋅ + ⋅ − ⋅

=

 

 

There are two answers, and those two answers are correct since the object is 10 m 

above ground once going upwards and once going downwards. 
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Most problems are like this: one of the equations for the motion at constant acceleration 

directly solves the problem. However, there are some problems which are not as simple as 

that. Here’s an example. 
 

Example 1.8.2 
 

A stone thrown vertically from the top of the roof of a building takes 0.1 s to travel past a 

window 1.5 m tall. The top of the window is 10 m below the roof. How fast was the stone 

thrown? 

 

Some data are missing for solving this 

problem directly. But since some 

information concerning the passage of the 

stone in front of the window is given (the 

time to pass from the top of the windows to 

the bottom of the window), it may be 

worthwhile to divide the problem into two 

parts. 

 

1) From the roof to the top of the window. 

 

2) From the top of the window to the 

bottom of the window. 
 

www.chegg.com/homework-help/questions-and-answers/falling-stone-takes-033-s-travel-

past-window-22-m-tall-figure-height-top-window-stone-fall-q3912013 

 

We’ll start with the second part. A y-axis directed downwards is used and the origin 

y = 0 m located at the roof. For this part, we know: 

 

The acceleration (a = 9.8 m/s². It’s positive since the y-axis is downwards.) 

The initial position (y� = 10 m) 

The final position (y = 11.5 m) 

The duration of the displacement (0.1 s) 

 

The initial velocity of this part, i.e. the velocity of the stone at the top of the window, 

can now be found. The velocity is calculated with the equation 
 

( )

2

0 0

2

0 ²

0

1

2

1
11.5 10 0,1 9.8 0.1

2

14.51

m
s

m
s

y y v t at

m m v s s

v

= + +

= + ⋅ + ⋅ ⋅

=

 

 

For the first part of the motion (from the roof to the top of the window), we now know: 

 

The acceleration (a = 9.8 m/s²) 
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The initial position (y� = 0 m) 

The final position (y = 10 m) 

The final velocity (v = 14.51 m/s) 

 

The initial velocity is then found with 
 

2 2

0 02 ( )a y y v v− = −  

( ) ( )
2 2

0²

0

2 9.8 10 0 14.51

3.813

m m
s s

m
s

m m v

v

⋅ ⋅ − = −

= ±
 

 

The stone has been launched with a velocity of 3.813 m/s upwards or downwards. Both 

answers are correct because a stone thrown upwards at 3.813 m/s comes back to the 

roof with the same velocity but directed downwards. This is the same thing as if it had 

been thrown straight downwards at 3.813 m/s. 

 

 

 

 

 

What if the acceleration is always changing? In that case, the equations of motion at 

constant acceleration must be forgotten and the basic definitions of velocity and 

acceleration have to be used. 
 

                                     
dx dv

v a
dt dt

= =  

 

From these definitions, the velocity of an object can be found from the equation of the 

position as a function of time. Just derive the formula of the position to get it. The 

acceleration as a function of time can also be found by deriving the velocity equation. But 

is it possible to do the opposite, that is, to find the position if the formula for the velocity 

is known? It’s simple; just do the opposite of the derivative! 

 

Example 1.9.1 
 

The velocity of an object is given by 2

³
9 m

s
v t= ⋅ . Where is the object at t = 5 s if it is at 

x = 10 m when t = 0 s? 

 

Since velocity is the derivative of position, 9t² must be the derivative of the position. 

Which function has been derived to get 9t²? The answer is 3t³ (derive it and you’ll see 

that you’ll obtain 9t²). However, this is not the only solution because 3t³ + 3 would 

also give the same derivative. Actually, the most general solution is 

  
3

³
3 constantm

s
x t= ⋅ +  
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Regardless of the value of the constant, the derivative is always 9t². 

 

But what is the value of this unknown constant? It is possible to find its value if the 

position at some moment in time is known. These data are called initial conditions. 

Here, the object is said to be at x = 10 m when t = 0 s. Substituting these values in the 

equation, it becomes 
 

3

³

3

³

3 constant

10 3 0 constant

10 0 constant

constant 10

m
s

m
s

x t

m

m

m

= +

= ⋅ +

= +

=

 

 

Thus, the position formula is 
 

3

³
3 10m

s
x t m= ⋅ +  

 

At t = 5 s, the object is thus 
 

( )
3

³
3 5 10

385

m
s

x s m

m

= ⋅ +

=
 

 
Formally, doing the opposite of the derivative is called doing the integral. Therefore, 

3t³ + constant is the integral of 9t². The correct notation for this procedure is 

 

³ ³
9 ² 3 ³ constantm m

s s
t dt t⋅ = ⋅ +  

 

This seems a little complicated, but you will understand this notation in calculus. Doing 

the integral of a function is usually harder than finding the derivative of a function (as 

you’ll discover in calculus). 

 

Thus, with the correct notation, the equations are 

 

Position from Velocity 

 

x vdt=   
 

 

Velocity from Acceleration 

 

v adt=   

 
You are probably not yet very familiar with integrals and this is why we will limit ourselves 

to functions of positions x, velocities v and accelerations a that are only polynomials of t. 

So, you just have to know the integral of t with an exponent. This integral is 
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1

1

n
n t

t dt
n

+

=
+  

 

This means that the exponent is increased by 1 and you then divide by the new exponent 

obtained. For example, the integral of t20 is 211
21

t . 

 
Example 1.9.2 
 

The acceleration of an object is given by 
³

6 m
s

a t= ⋅ . At t = 0 s, the position of the object is 

x = 0 m, and its velocity is v = 20 m/s. What are the velocity and the position at t = 5 s?  

 

Let’s start by calculating the velocity with an integral. The velocity is 
 

³

³

6

3 ²

m
s

m
s

v adt

v tdt

v t C

=

= ⋅

= ⋅ +




 

 

Using the initial conditions, the value of the constant can be found. 
 

³
3 ²

20 0

20

m
s

m
s

m
s

v t C

C

C

= ⋅ +

= +

=

 

 

Therefore, the formula 2

³
3 20m m

s s
v t= ⋅ +  gives the velocity. 

 

Therefore, the velocity at t = 5 s is 
 

( )
2

³
3 5 20

95

m m
s s

m
s

v s= ⋅ +

=
 

 

This calculation could also have been 

done with the graphical method by 

calculating the blue area on this graph. 

 

This area of the triangle is 75 m/s. Note 

that this area is the change of velocity. 

But since the initial velocity is 20 m/s, 

the velocity is 95 m/s. 

 

The position is then found with the 

integral 
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( )³

³

3 ² 20

1 ³ 20

m m
s s

m m
s s

x vdt

x t dt

x t t C

=

= ⋅ +

= ⋅ + ⋅ +



  

 

Using the initial conditions, the value of the constant can be found. 
 

³
1 ³ 20m m

s s
x t t C= ⋅ + ⋅ +  

0 0 0

0

C

C

= + +

=
 

 

The formula 
³

1 ³ 20m m
s s

x t t= ⋅ + ⋅  is, therefore, the formula of the position. 

 

Thus, the position at t = 5 s is 
 

( )³
1 5 ³ 20 5

225

m m
s s

x s s

m

= ⋅ + ⋅

=
 

 

The graphical method could also be used to 

determine the displacement. To do this, the 

area under the curve on the graph on the 

right must be calculated. 

 

The difficulty here is that we have no 

formula to calculate an area of that shape. 

Don’t be sad. Actually, you know how to 

calculate the area now. The area was 

calculated using an integral to obtain 225 m. This means that you can calculate the 

area under curves using integrals. You will explore this beautiful idea further in 

calculus. 

 

Note again that this area gives the displacement, therefore, the change in position. As 

the initial position is 0 m, the position after 5 seconds is 225 m. If the initial position 

had been 10 m, the final position would have been 235 m (225 m more than the initial 

position). 

 

 

 

A Small Variation
  

In the following example, the velocity is given as a function of position, not as a function 

of time. This example shows how to solve this kind of problem. (This goes beyond what 

you need to know in this course. It’s just there to show you that it’s possible to solve this 

kind of problem.) 
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Example 1.9.3 
 

The velocity of an object is given by v = x

2s
. At t = 0 s, the position is x = 100 m. What are 

the velocity and the position at t = 5 s?  

 

According to the definition of velocity, this means that 
 

2

x
v

s
=  

2

1

2

dx x

dt s

dx
dt

x s

=

=
 

 

With an integral, this becomes 
 

( )

1

2

ln
2

dx
dt

x s

t
x C

s

=

= +

 
 

 

Using the initial conditions, the value of the constant can be found 
 

( )

( )

0
ln 100

2

ln 100

s
m C

s

C m

= +

=

 

 

The position as a function of time is then 
 

( ) ( )

( ) ( )

/2

/2

ln ln 100
2

ln ln 100
2

ln
100 2

100

100

t s

t s

t
x m

s

t
x m

s

x t

m s

x
e

m

x m e

= +

− =

=

=

= ⋅

 

 

Thus, at t = 5 s, the position is 
 

5 /2100

1218

s sx m e

m

= ⋅

=
 

 

and the velocity is 
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2

1218

2

609 m
s

x
v

s

m

s

=

=

=

 

 

 

 

Displacement 
 

2 1x x x∆ = −  

 

Average Velocity 
 

x
v

t

∆
=

∆
 

 

Instantaneous Velocity 
 

dx
v

dt
=  

 

Equation of Motion at Constant Velocity 
 

0x x vt= +  

 

Moment when Two Objects, Initially at a Distance L from Each Other, Are in the 

Same Place if they Move at Constant Velocities. 
 

1 2

L
t

v v
=

−
 

 

Average Acceleration 
 

v
a

t

∆
=

∆
 

 

Instantaneous Acceleration 
 

dv
a

dt
=  

 

Position from Velocity 
 

x vdt=   
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Velocity from Acceleration 
 

v adt=   

 

Graphical Representations 
 

 
 

Equations of Motion with Constant Acceleration (also Called Uniformly Accelerated 

Motion) 
 

0v v at= +  

2

0 0

1

2
x x v t at= + +  

( ) 2 2

0 0
2a x x v v− = −  

( )0 0

1

2
x x v v t= + +  

 

Free-Fall 

gravitational 9.8 / ² downwardsa m s=  

²
9.8 m

s
g =  

 

 

 

1.3 Average Velocity 
 

1. What was the average velocity of the Apollo 11 capsule, knowing it went to the 

Moon, at a distance of 384 400 km, in 72 hours and 49 minutes? 

 
2. In 1907, the liner Lusitania beat the record for the fastest crossing of the Atlantic 

to win the Blue Ribbon. She then beat the ship 

Deutschland, which held the Blue Ribbon since 

1903 when she crosses the Atlantic in 5 days, 11 

hours and 54 minutes for an average velocity of 

23.15 knots. The Lusitania did better with an 

average velocity of 23.99 knots. Knowing that 

1 knot = 1.853 km/h, by how much time did the 

Lusitania beat the Deutschland? 
en.wikipedia.org/wiki/RMS_Lusitania 
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1.4 Instantaneous Velocity 
 

3. The velocity of an angry panda as 

a function of time is given by this 

graph. What is the displacement of 

the panda between t = 2 s and 

t = 14 s?  

 

 

 

1.5 Motion With Constant Velocity 
 

4. Richard took a walk in a straight line with a constant velocity of 5 km/h. How much 

time lasted his walk if its displacement was 350 m? 

 

 

5. When and where will these two submarines collide? 

 
Halliday, Resnick, Walker, Ondes, optique et physique moderne, Chenelière/McGraw-Hill, 2004 

 

 

6. While on vacation near a river, little Nicole catches a fish with her bare hands, a 

feat that was seen as an act of war by a 

family of grizzly bears feasting close by. 

The bears, angry, start running after little 

Nicole. Terrified, Nicole runs at 15 km/h 

towards the family car, which is 100 m 

away, while the bears, which are initially 

30 m from Nicole, set off in pursuit with 

a 25 km/h velocity. Will the bears catch 

Nicole? 
 

www.shoppedornot.com/shopped-or-not/girl-running-from-bear/ 
 

 

7. Going from Quebec to Boston, Dieudonné goes at 110 km/h for 4 hours and at 

130 km/h for 2 hours. 
 

a) What is the total displacement? 

b) What is the average velocity?  

 

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  1-Kinematics 53 

 

8. Phil moves at 30 m/s for 80 s and then retraces his steps with a 20 m/s speed for 

15 s. 
 

a) What is Phil’s total displacement? 

b) What is the distance travelled by Phil? 

c) What is Phil’s average velocity?  

d) What is Phil’s average speed? 

 

 

9. An earthquake generates two different types of waves that propagate in the ground. 

The primary waves travel at 8 km/s, and the secondary waves travel at 5 km/s. 

Thus, an observer at some distance from the epicentre of the earthquake receives 

the primary waves first and then the secondary waves. How far is the observer from 

the epicentre of the earthquake if the secondary waves arrive 40 seconds after the 

primary waves? 

 

 

10. The position of an object as a function 

of time is given by the following graph. 
 

a) What is the displacement of the 

object between t = 0 s and t = 9 s? 

b) What is the distance travelled 

between t = 0 s and t = 9 s?  

c) What is the average velocity 

between t = 3 s and t = 9 s? 

d) What is the velocity at t = 1 s?  

e) What is the velocity at t = 8 s?  

 

 

11. The position of an object is given by the formula 2

²
4 5 10m m

s s
x t t m= ⋅ − ⋅ + . 

 

a) What is the average velocity between t = 0 s and t = 2 s? 

b) What is the velocity at t = 2 s? 

 

 

1.6 Acceleration 
 

12. A turbo Kia Optima starting from rest accelerates to 100 km/h in 6.1 seconds. What 

is the average acceleration of the car? 

 

 

13. An Acura TSX going at 120 km/h stops in 3.6 s with an intense braking. What is 

the average acceleration of the car as it brakes? 
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14. The velocity of an object as a function of time is given by the following graph. 
 

a) What is the average acceleration 

between t = 0 s and t = 4 s? 

b) What is the average acceleration 

between t = 10 s and t = 12 s? 

c) What is the average acceleration 

between t = 4 s and t = 8 s? 

d) What is the acceleration at t = 1 s? 

e) What is the acceleration at 

t = 14 s? 

 

 

15. The position of an object as a function of time is given by the following graph. 
 

a) What is the sign (positive, 

negative or zero) of the 

acceleration at t = 1 s? 

b) What is the sign (positive, 

negative or zero) of the 

acceleration at t = 3 s? 

c) What is the sign (positive, 

negative or zero) of the 

acceleration at t = 4 s? 
 

www.kwantlen.ca/science/physics/faculty/mcoombes/webtests/xtgraphquiz/xtGraphQuiz.htm 

 

 

16.  The position of an object is given by the formula 
³ ²

3 ³ 8 ² 2 6m m m
s s s

x t t t m= ⋅ − ⋅ + ⋅ − . 
 

a) What is the average acceleration between t = 0 s and t = 1 s? 

b) What is the acceleration at t = 2 s? 

c) What is the jerk at t = 1 s? 

 

 

1.7 Motion with Constant Acceleration 
 

17. A BMW starts from rest with an acceleration of 5 m/s² for 6 s. 
 

a) What is the distance travelled by the car during this time? 

b) What is the velocity of the car after 6 seconds? 

 

 

18. There are two poles 100 m apart besides the road. Ulysses travels on this road in a 

car having a steady acceleration. When Ulysses goes by the first pole, he has a 

velocity of 25 m/s. When Ulysses passes by the second pole, his velocity is now 

15 m/s. 
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a) How long did it take for Ulysses to travel from one pole to the other?  

b) What is the acceleration of the car? 

c) Suppose there is a third pole 100 metres to the right of the second pole. What 

will the velocity of the car be when it passes by this third pole if the 

acceleration remains constant? 

 

 

19. Near the end of a 1600 m race (in a straight line), Mahamadou gives a final effort 

to finish the race. While he is 200 m from the finish line and has a velocity of 5 m/s, 

his extra efforts allow him to have a constant acceleration up to the end of the race 

so that he travels the last 200 m in 25 seconds. 
 

a) What is Mahamadou’s acceleration in the last 200 m? 

b) What is Mahamadou’s velocity at the finish line? 

 

 

20. At a bowling competition, Oliver throws his bowling ball with a velocity of 10 m/s. 

As the ball heads towards the pins, friction makes the ball slow down at the rate of 

0.2 m/s², so that the ball hits the pins with a velocity of 9.65 m/s. What is the 

distance travelled by the bowling ball? 

 

 

21. An accelerating car passes on a 30 m long bridge in 1.2 s. At the far end of the 

bridge, the velocity of the car is 20 m/s. What was the velocity of the car at the near 

end of the bridge? 

 

 

22. The velocity of a car braking with a constant acceleration passes from 30 m/s to 

24 m/s over a distance of 32 m. What is the stopping distance of the car if it 

continues to brake with the same acceleration and if the initial velocity was 42 m/s? 

 

 

23. Going through the la Verandrye Park at night at 108 km/h, Marie-Pascale suddenly 

sees a moose in the middle of the road, a 100 m in front of her car. Her car then 

continues moving at 108 km/h for 0.5 second, the time it takes for Marie-Pascale 

to react and apply the brakes, and then slows down with an acceleration of 4 m/s². 

Will she hit the moose? 
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24.   Here are the accelerations of the Didier and Gilles during a 100 m race. 
 

Didier: accelerates at 5 m/s² for 1.8 second then decelerates at 0.1 m/s² up 

to the end. 

Gilles: accelerates at 6 m/s² for 1.7 second and then decelerates at 0.24 m/s² 

up to the end. 
 

Obviously, they were both at rest at the start of the race. Who won the race and by 

how much time? 

 

 

25. Two rockets are initially at rest one besides the other. The first rocket starts moving 

with a constant acceleration of 5 m/s² while the other rocket starts to move only two 

seconds later with a steady acceleration of 6 m/s². Where and when will the second 

rocket catch up with the first rocket? 

 

 

26. A car starts from rest with a constant acceleration of 2 m/s², and then slows down 

with a constant acceleration of –5 m/s² until it stops. If the displacement was 400 m, 

what was the maximum speed of the car? 

 

 

27. Here are the positions of an object at three moments in time. 
 

x = 5 m at t = 0 s 

x = 5 m at t = 1 s 

x = 9 m at t = 2 s 
 

Where will the object be at t = 5 s? 

 

 

1.8 Free Fall 
 

28. Here is a video showing a curious free-fall activity with pumpkins. 

https://www.youtube.com/watch?v=tbNKVmWj1K4 

The pumpkins are dropped from a height of 12 m. 
 

a) What is the velocity of the pumpkin when it hits the car? 

b) How long did the free fall of the pumpkin last? 

 

 

29. Arthur throws a stone upwards with a velocity of 28 m/s from 

the edge of a cliff 80 metres high. 
 

a) How high will the stone go (height measured from the top 

of the cliff)? 

b) When will the stone be 25 m above its starting point? 

c) When will the stone be 25 m below its starting point? 
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d) What is the velocity of the stone when it is 20 m above its point of departure? 

e) When does the speed equal 10 m/s? 

f) How high above its starting point is the stone when the speed is 12 m/s?  

g) What is the velocity of the stone when it reaches the bottom of the cliff? 

h) What is the total flight time of the stone? 

 

 

 

30. Tony receives a balloon moving at 24 m/s filled with water on the head. The balloon 

was launched by Tryphon from a window 10 m above Tony’s head. What was the 

initial velocity of the balloon? 

 

 

 

31. Julian throws a ball straight up. How fast was the ball launched if it rises to a height 

of 80 m above its starting point? 

 

 

 

32. Hubert kicks a ball directly upwards with his foot. What was the initial velocity of 

the ball if it returns to Hubert’s foot after a 12-second flight? 

 

 

 

33. An object is thrown directly upwards with a velocity v�. After ascending 5 m, the 

velocity of the object is now only 30% of its initial velocity v�. What is the value 

of v�? 

 

 

 

34. A rocket, initially at rest on the ground, takes off vertically. While its engine works, 

the rocket accelerated at 4 m/s² upwards. After 20 s, the engine stops and the rocket 

is in free fall. 
 

a) How high will the rocket go? 

b) How much time will it take for the rocket to come back to the ground?  

 

 

 

35. Kim dropped a ball, without giving it an initial velocity, from the top of the CN 

Tower at a height of 400 m. 1 second later, Leon throws a ball downwards from the 

same spot with a velocity of 12 m/s. Will Leon’s ball overtake Kim’s ball and, if 

so, how high above ground and after how much time? 
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36. Johnny, at the top of a tower, throws a ball downwards at 5 m/s 

while Frederique, on the ground, throws a ball upwards with a speed 

of 15 m/s. Both balls start simultaneously. Initially, Frederique’s 

ball is 1 m from the ground and Johnny’s ball is 51 m above the 

ground. 
 

a) When will the balls collide (if they do)? 

b) At what height above ground will the balls collide? 

c) What is the velocity of each ball when they collide? 

 

 

 

1.9 Motion with Non-Constant Acceleration 
 

37. The velocity of a remote-controlled car is given by the formula  
 

4 3 2

3 22 6 4 2m m m m
ss s s

v t t t= ⋅ − ⋅ + ⋅ +  

 

a) What is the position of the car at t = 2 s if it was initially at x = 5 m? 

b) What is the acceleration of the car at t = 2 s? 

 

 

38. The initial velocity of an object is 4 m/s, and its acceleration is given by the formula 
 

4

2

²
36 10m m

ss
a t= ⋅ +  

 

a) What is the velocity of the object at t = 1 s. 

b) What is the displacement of the object between t = 0 s and t = 4 s. 

 

 

Challenges 

(Questions more difficult than the exam questions.) 

 

39. On March 30, 2012, Larry Dixon travelled 400 m in 4.503 seconds with his 

dragster. Let’s simplify a little by assuming 

that he had a constant acceleration until he 

reaches a maximum speed of 534 km/h. 

which it maintained up to the finish line. 
  
a) What was the duration of the acceleration 

phase? 

b) What was the acceleration of the dragster 

at the beginning of its motion? 
 

www.pinterest.com/rlowen31/top-fuel-dragster/ 
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40. Sophie wants to board a train. To get there, she runs on the track in the direction of 

the rear of the train. When she is 10 m from the train, the train starts moving with 

a constant acceleration of 3 m/s². What is the minimum speed that Sophie must 

maintain to catch the train? 

 
www.clipartkid.com/train-cars-cliparts/ and www.clipartkid.com/running-work-scared-cliparts/ 

 
1.3 Average Velocity 
 

1. 1466.4 m/s = 5279 km/h 

2. 4 h 37 min 

 

1.4 Instantaneous Velocity 
 

3. 84 m 

 

1.5 Motion With Constant Velocity 
 

4. 4 min 12 s 

5. In 60 seconds. The collision occurs 833 m to the right of the starting position of 

the French submarine. 

6. The bears will catch her before she arrives at the car and small Nicole must kindly 

give back the fish to the grizzly bears. 

7. a) 700 km        b) 116.7 km/h  

8. a) 2100 m        b) 2700 m          c) 22.1 m/s          d) 28.42 m/s 

9. 533 km 

10. a) -8 m          b) 24 m          c) -2.67 m/s          d) 2.67 m/s          e) -4 m/s 

11. a) 3 m/s          b) 11 m/s 

 

1.6 Acceleration 
 

12.  4.554 m/s² 

13.  – 9.26 m/s² 

14.  a) 2 m/s²     b) -2 m/s²     c) 0 m/s²      d) 4 m/s²     e) 0 m/s² 
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15.  a) positive     b) negative     c) positive 

16.  a) -7 m/s²          b) 20 m/s²          c) 18 m/s³  

 

1.7 Motion With Constant Acceleration 
 

17.  a) 90 m          b) 30 m/s 

18.  a) 5 s          b) -2 m/s²          c) The car will stop before reaching the third pole. 

19.  a) 0.24 m/s²          b) 11 m/s 

20.  17.19 m 

21.  30 m/s 

22.  174.2 m 

23.  She hits the moose 

24.  Gilles wins by 0.796 s 

25.  22.954 s after the start of the first rocket, 1317 m from the start. 

26.  33.81 m/s 

27.  45 m 

 

1.8 Free Fall 
 

28.  a) 15.34 m/s          b) 1.565 s 

29.  a) 40 m above the top of the cliff      b) 1.108 s and 4.607 s       c) 6.499 s 

 d) ±19.8 m/s    e) 1.837 s and 3.878 s      f) 32.65 m      g) -48.50 m/s     h) 7.806 s 

30.  ±19.49 m/s 

31.  39.6 m/s 

32.  58.8 m/s 

33.  10.38 m/s 

34.  a) 1127 m        b) 43.326 s  

35.  Leon’s ball catches up with Kim’s ball 2.227 s after Leon’s ball departure, 

348.97 m above ground. 

36.  a) 2.5 s          b) 7.875 m above ground          c) Johnny’s ball velocity is 29.5 m/s 

downwards, and Frederique’s ball velocity is 9.5 m/s downwards. 

 

1.9 Motion with Non-Constant Acceleration 
 

37.  a) 9m          b) 4 m/s² 

38.  a) 26 m/s          b) 864 m  

 

Challenges 

 

39.  a) 3.613 s     b) 41.06 m/s² 

40.  7.746 m/s 


