Liste des symboles utilisés

a Accélération

a Longueur d'un des côtés dans un triangle (loi des cosinus et des sinus)

 \overline{a} Accélération moyenne a_c Accélération centripète a_{max} Accélération maximale a_t Accélération tangentielle

A Aire pour le calcul de la trainée = Aire des ailes (aire alaire) pour un avion
A Aire sur laquelle s'exerce une pression (formule de la force de pression,

chapitre 10)

A Aire du bout d'un tube (formule de début, équation de continuité et équation de

Bernoulli, chapitre 10)

 A_h Aire du cercle balayé par l'hélice ou la soufflante en tournant

b Longueur d'un des côtés dans un triangle (loi des cosinus et des sinus)

c Longueur d'un des côtés dans un triangle (loi des cosinus et des sinus)

C Rythme de montée (*climb rate*)

 C_d Coefficient de trainée

 C_{d0} Coefficient de trainée de portance nul

 C_{di} Coefficient de trainée induite C_L Coefficient de portance

 C_{Lmax} Coefficient de portance maximum C_{max} Rythme de montée maximum

D Distance

 D_{NM} Distance en milles nautiques

 D_{max} Distance maximale qu'on peut parcourir en planant sans poussée

e Coefficient d'Oswald E_k Énergie cinétique E_{mec} Énergie mécanique

f Finesse

 f_{max} Finesse maximale

F Force

 F_A Poussée d'Archimède F_{AB} Force faite sur A par B

 F_d Trainée

 $F_{d min}$ Trainée minimale

 F_f Force de friction entre 2 surfaces

 F_{fmax} Force de friction maximale entre 2 surfaces

 F_L Portance

 F_{LG} Portance faite par la gouverne de profondeur

FL Flight level (altitude en pieds divisée par 100)

 F_N Force normale F_P Force de pression

 F_t Force de poussée des moteurs

 $F_{t \max}$ Force de poussée des moteurs maximale

g 9,8 m/s² (accélération gravitationnelle/champ gravitationnel à la surface de la

Terre)

h Profondeur de l'eau (chapitre 10)

h Hauteur d'une colonne de liquide (chapitre 10)

h Distance entre la surface de l'eau et un trou (formule de Torricelli, chapitre 10)

H Distance entre le sol et l'avion (absolute altitude)
 H Composante horizontale de la force faite par un pivot

LDR Longueur de piste requise à l'atterrissage

m Masse

n Facteur de charge n_g Nombre de g N Force normale

p Quantité de mouvement

P Poids

P Puissance (chapitre 8)
P Pression (chapitre 10)
Papp Poids apparent

P_{atm} Pression atmosphérique

 P_{av} Puissance maximale disponible

 P_{jet} Puissance du jet

 P_{min} Puissance minimale pour un avion en vol horizontal à vitesse constante

 P_{nette} Puissance nette P_{req} Puissance requise

Q Débit d'un fluide (en m³/s)

r Rayon d'une trajectoire circulaire

r Distance entre l'axe et le point d'application de la force (chapitre 9)

 r_{\perp} Bras de levier (plus courte distance entre l'axe et la ligne qui prolonge la force)

R Quantité de gaz éjecté par un moteur (en kg/s)

 Δs Distance parcourue le long d'un cercle Distance parcourue lors du calcul du travail

S Envergure des ailes

t Temps

T Période d'un mouvement circulaire
 T Température de l'air (chapitre 10)

T/W Rapport poussée sur poids

TODR Longueur de piste requise au décollage

 U_g Énergie gravitationnelle

v Vitesse

 \overline{v} Vitesse moyenne v_0 Vitesse à t = 0 v_{atter} Vitesse d'atterrissage

v_{d min} Vitesse de trainée minimale

*v*_{decol} Vitesse de décollage

 v_{exp} Vitesse d'expulsion des gaz par un moteur

 v_{GS} Vitesse par rapport au sol Vitesse d'un avion en nœuds

 v_L Vitesse limite pour un objet qui tombe dans un fluide

v_{min} Vitesse de décrochage

 $v_{min n}$ Vitesse de décrochage avec un facteur de charge n

 $v_{P min}$ Vitesse de puissance minimale v_{TAS} Vitesse par rapport à l'air

*V*_{vent} Vitesse du vent

V Composante verticale de la force faite par un pivot

 V_f Volume qu'un objet occupe dans un fluide

W Travail

 W_{autres} Travail fait par les forces autres que la gravitation

 W_d Travail fait par la trainée W_f Travail fait par la friction W_g Travail fait par la gravitation W_N Travail fait par la normale

 W_{net} Travail net

 W_t Travail fait par la poussée des moteurs

x Position en x x_0 Position à t = 0

 x_{cg} Position en x du centre de gravité

y Position en y

y Altitude (au-dessus du niveau des mers) (true altitude)

 y_0 Position à t = 0

 y_{cg} Position en y du centre de gravité

z Position en z z_0 Position à t = 0

 z_{cg} Position en x du centre de gravité

α	Un des angles dans un triangle (loi des cosinus et loi des sinus)
β	Un des angles dans un triangle (loi des cosinus et loi des sinus)
$oldsymbol{eta}$	Angle d'inclinaison d'un avion
$oldsymbol{eta_{ ext{max}}}$	Angle d'inclinaison maximum d'un avion
γ	Un des angles dans un triangle (loi des cosinus et loi des sinus)
η	Efficacité propulsive
η	Viscosité (chapitre 10)
$\eta_{\scriptscriptstyle tot}$	Efficacité totale
heta	Direction d'un vecteur (chapitre 2)
heta	Angle de départ d'un projectile (chapitre 2)
heta	Angle de montée ou de descente d'un avion (chapitre 5)
heta	Angle entre la force et le déplacement (formule du travail, chapitre 8)
$ heta_{ ext{min}}$	Angle de descente minimum sans poussée (chapitre 5)
λ	Masse linéique (masse par unité de longueur)
μ_c	Coefficient de friction cinétique
μ_s	Coefficient de friction statique
ho	Masse volumique (souvent celle de l'air)
$ ho_{liq}$	Masse volumique du liquide dans une colonne de liquide (chapitre 10)
σ	Masse surfacique (masse par unité de surface)
au	Moment de force
$ au_{net}$	Moment de force net
ϕ	Angle entre la force et la distance (chapitre 9)